Answer:
the force acting on the team mate is 1.19 kN.
Explanation:
given,
mass = 196 lbm
while tackling, the deceleration is from velocity 6.7 m/s to 0 m/s
time taken for deceleration = 0.5 sec
F = mass × acceleration
acceleration =
= -13.4 m/s²
1 lbs = 0.453 kg
196 lbs = 196 × 0.453 = 88.79 kg
F = 88.79 × 13.4
F = 1189.786 N = 1.19 kN
hence, the force acting on the team mate is 1.19 kN.
<h2>
Mass of object in Earth is 1.37 kg</h2>
Explanation:
On planet B where the magnitude of the free-fall acceleration is 1.91g , the object weighs 25.74 N.
We have
Weight = Mass x Acceleration due to gravity
On planet B
25.74 = Mass x 1.91 g
25.74 = Mass x 1.91 x 9.81
Mass = 1.37 kg
Mass is constant for an object. It will not change with location.
Mass of object in Earth = Mass of object in Planet B
Mass of object in Earth = 1.37 kg
Answer:
Time, t = 13.34 seconds.
Explanation:
Given the following data;
Initial velocity, u = 85km/hr to meters per seconds = 85*1000/3600 = 23.61 m/s
Final velocity, v = 45km/hr to meters per seconds = 45*1000/3600 = 12.5 m/s
Acceleration, a = -3 km/hr/sec to meters per seconds square = -3*1000/3600 = -0.833m/s²
To find the time;
Acceleration = (v - u)/t
-0.833 = (12.5 - 23.61)/t
-0.833t = -11.11
t = 11.11/0.833
Time, t = 13.34 seconds.
Answer:
B.will increase the maximum static friction between the box and the floor
Explanation:
Because static friction is the force that keeps an object at rest
Explanation:
Remember Newton's Second Law.

If the force acting on both bikers is the same, we can look at the relationship between acceleration and mass.
If Biker 1 has a mass of 10kg and Biker 2 has a mass of 20kg, and both are being acted upon by a force of 100 N, let's see what that looks like. 

So, given the same force, an object with GREATER mass will have less acceleration.