1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leona [35]
3 years ago
10

A frictionless piston cylinder device is subjected to 1.013 bar external pressure. The piston mass is 200 kg, it has an area of

0.15 m2, and the initial volume of the entrapped ideal gas is 0.12 m3. The piston and cylinder do not conduct heat, but heat can be added to the gas by a heating coil. The gas has a constant-volume heat capacity of 30.1 J/(mol K) and an initial temperature of 298 K, and 10.5 kJ of energy are to be supplied to the gas through the heating coil.
a.) If stops placed at the initial equilibrium position of the piston prevent it from rising, what will be the final temperature and pressure of the gas?
b.) If the piston is allowed to move freely, what will be the final temperature and volume of the gas?
Chemistry
1 answer:
Bad White [126]3 years ago
4 0

Answer:

a) T_{2} = 360.955\,K, P_{2} = 138569.171\,Pa\,(1.386\,bar), b) T_{2} =  347.348\,K, V_{2} = 0.14\,m^{3}

Explanation:

a) The ideal gas is experimenting an isocoric process and the following relationship is used:

\frac{T_{1}}{P_{1}} = \frac{T_{2}}{P_{2}}

Final temperature is cleared from this expression:

Q = n\cdot \bar c_{v}\cdot (T_{2}-T_{1})

T_{2} = T_{1} + \frac{Q}{n\cdot \bar c_{v}}

The number of moles of the ideal gas is:

n = \frac{P_{1}\cdot V_{1}}{R_{u}\cdot T_{1}}

n = \frac{\left(101,325\,Pa + \frac{(200\,kg)\cdot (9.807\,\frac{m}{s^{2}} )}{0.15\,m^{2}} \right)\cdot (0.12\,m^{3})}{(8.314\,\frac{Pa\cdot m^{3}}{mol\cdot K} )\cdot (298\,K)}

n = 5.541\,mol

The final temperature is:

T_{2} = 298\,K +\frac{10,500\,J}{(5.541\,mol)\cdot (30.1\,\frac{J}{mol\cdot K} )}

T_{2} = 360.955\,K

The final pressure is:

P_{2} = \frac{T_{2}}{T_{1}}\cdot P_{1}

P_{2} = \frac{360.955\,K}{298\,K}\cdot \left(101,325\,Pa + \frac{(200\,kg)\cdot (9.807\,\frac{m}{s^{2}} )}{0.15\,m^{2}}\right)

P_{2} = 138569.171\,Pa\,(1.386\,bar)

b) The ideal gas is experimenting an isobaric process and the following relationship is used:

\frac{T_{1}}{V_{1}} = \frac{T_{2}}{V_{2}}

Final temperature is cleared from this expression:

Q = n\cdot \bar c_{p}\cdot (T_{2}-T_{1})

T_{2} = T_{1} + \frac{Q}{n\cdot \bar c_{p}}

T_{2} = 298\,K +\frac{10,500\,J}{(5.541\,mol)\cdot (38.4\,\frac{J}{mol\cdot K} )}

T_{2} =  347.348\,K

The final volume is:

V_{2} = \frac{T_{2}}{T_{1}}\cdot V_{1}

V_{2} = \frac{347.348\,K}{298\,K}\cdot (0.12\,m^{3})

V_{2} = 0.14\,m^{3}

You might be interested in
Find the natural abundance of Si-30.
nataly862011 [7]
<span> First you need to know how many isotopes there are of silicon, and its average atomic units (look at periodic table). Then make up a system of equations to solve for it. Theres 3 stable silicon isotopes (28, 29, 30) so you will need to have 3 equations. You must be given the percent abundance of at least one of the isotopes to solve because here I can only see 2 equations (numbered down below) set x = percent abundance of si-28 y = percent abundance of si-29 z = percent abundance of si-30 since all of silicon atoms account for 100% of all silicon: x + y + z = 100% = 1 therefore: 1) x = 1 - y - z You also have 2) 28x + 29y + 30z = average atomic mass you can substitute x so that equation becomes: 28 (1 - y - z) + 29y + 30z = average atomic mass See how you have 2 variables here? You cant go on until you know the value of one isotope already or you have given a clue which you can derive the third equation</span>
5 0
3 years ago
I need help with this question please and thank you
Tcecarenko [31]
The answer should be B
6 0
3 years ago
What type of energy travels through space as waves?
RideAnS [48]
Shhdhdhdbdbrjfidjdnfnfbfbxuxfnmfmfksixjnfnfntjficjfjfj
7 0
3 years ago
Read 2 more answers
Which among these were independent
prohojiy [21]
Amount of sunlight, amount of water, and amount of fertilizer
3 0
2 years ago
What happens when HCl gas is passed through a saturated PbCl2 solution?
VikaD [51]
When HCl is added to a saturated solution of PbCl2, the solubility of PbCl2 would decrease so precipitation would occur. The decrease in the solubility is due to the common ion effect or the presence of Cl- ions in both compounds.
3 0
3 years ago
Other questions:
  • What do you mean by fractional column?​
    9·2 answers
  • In what type of solids are the particles not arranged in a regular pattern
    8·1 answer
  • An udentified substance, Y, was thought to be one of the following three compounds.
    15·1 answer
  • Why are covalently bonded materials generally less dense than metallically or ionically bonded ones
    8·1 answer
  • A or B i need help fast
    15·1 answer
  • If you burn 52.0 g of hydrogen and produce 465 g of water, how much oxygen reacted?
    8·1 answer
  • Which sentence most accurately describes electrically charged objects?
    8·2 answers
  • In this activity, you will plan and conduct an investigation to compare a single property
    14·1 answer
  • PLEASE HELP!!
    7·1 answer
  • I need help asap <br>why is there only one variable in an experiment that changes? ​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!