If I did this correctly the balanced equation would be:
14H⁺+Cr₂O₇²⁻+6I⁻→3I₂+2Cr³⁺+7H₂O
oxidation half: (iodide was oxidized)
2I⁻→I₂+2e⁻
reduction half: (chromium was reduced)
14H⁺+Cr₂O₇²⁻+6e⁻→2Cr³⁺+7H₂O
H⁺ comes from the solution. It is in the final reaction since in redox reactions the oxygen is turned into water since it can't just go away. I multiplied the oxidation half reaction by 3 in order for both half reactions to half the same number of electrons since equal numbers of electrons need to be lost and gained for the reaction to be balanced.
I hope this helps. Let me know if anything is unclear.
The element that is commonly found in meteorites is oxygen
If the stigma is messed up it is hard for bees or insects to pollinate because the way they pollinate is by eating the nectar from the stigma and stick the pollen on their body and stick it on the stigma.
But if there is no stigma=no pollination
A good example of a model is a lily
<h2>
Answer:</h2>
390 g KNO₃
<h2>
General Formulas and Concepts:</h2><h3><u>Chemistry</u></h3>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3><u>Math</u></h3>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h2>
Explanation:</h2>
<u>Step 1: Define</u>
2.3 × 10²⁴ formula units KNO₃
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of K - 39.10 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of O - 16.00 g.mol
Molar Mass of KNO₃ - 39.10 + 14.01 + 3(16.00) = 101.11 g/mol
<u>Step 3: Convert</u>
<u />
= 386.172 g KNO₃
<u>Step 4: Check</u>
<em>We are given 2 sig figs. Follow sig fig rules and round.</em>
386.172 g KNO₃ ≈ 390 g KNO₃
This would be 1.22 x 10^1
You simply move the decimal.
If this helped you, please list me as brainliest!