Answer : The value of equilibrium constant (K) is, 424.3
Explanation : Given,
Concentration of
at equilibrium = 0.067 mol
Concentration of
at equilibrium = 0.021 mol
Concentration of
at equilibrium = 0.040 mol
The given chemical reaction is:

The expression for equilibrium constant is:
![K_c=\frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)
Now put all the given values in this expression, we get:


Thus, the value of equilibrium constant (K) is, 424.3
CH4+(x)O2=CO2 +(Y)H2O
C=1 +H=4 +O=? = C=1 +O=2+? +H=?
H=4>>Y=2
C=1 +H=4 +O=? = C=1 +O=(2+2) +H=4
C=1 +H=4 +O=4 = C=1 +O=4 +H=4
O=4>>X=2
CH4+(2)O2 =CO2 +(2)H2O
Answer:
First
divide each element by its Molecular Mass to get their respective moles
Then Divide through by the lowest of the moles
You'll have the ratio of Carbon Hydrogen and Oxygen to be
C2H3O
Given Molecular Mass=184.27
C2H3On=184.27
n(12x2 + 1x3 + 16) =184.27
Evaluating this... You'll have n=4.3
Pls check if you assigned the correct value to each element
Answer:
The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. ... Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field.
Explanation: