Ok first, we have to create a balanced equation for the dissolution of nitrous acid.
HNO2 <-> H(+) + NO2(-)
Next, create an ICE table
HNO2 <--> H+ NO2-
[]i 0.230M 0M 0M
Δ[] -x +x +x
[]f 0.230-x x x
Then, using the concentration equation, you get
4.5x10^-4 = [H+][NO2-]/[HNO2]
4.5x10^-4 = x*x / .230 - x
However, because the Ka value for nitrous acid is lower than 10^-3, we can assume the amount it dissociates is negligable,
assume 0.230-x ≈ 0.230
4.5x10^-4 = x^2/0.230
Then, we solve for x by first multiplying both sides by 0.230 and then taking the square root of both sides.
We get the final concentrations of [H+] and [NO2-] to be x, which equals 0.01M.
Then to find percent dissociation, you do final concentration/initial concentration.
0.01M/0.230M = .0434 or
≈4.34% dissociation.
Answer:
a) Ag(NH₃)₂⁺, Cl⁻.
b) NH₃.
c) AgCl.
Explanation:
Based on LeChatelier's law, a system in chemistry can change responding to a disturbance of concentration, temperature, etc. in order to restore a new state.
In the reaction:
AgCl(s) + 2NH₃(aq) ⇌ Ag(NH₃)₂⁺(aq) + Cl⁻(aq)
When reactants are added, the system will produce more products restoring the equilibrium and vice versa. A reactant in solid state doesn't take part in the equilibrium, thus:
a) Ag(NH₃)₂⁺, Cl⁻. The addition of products will shift the equilibrium to the left
b) NH₃. The addition of reactant will shift the equilibrium to the right.
c) As AgCl is in solid phase, will not shift the equilibrium in either direction.
1) Both have molecules or atoms
2) Both occupy space and have mass
3) Both can be ionized
4) Solids conduct electricity similarly gas can also conduct electricity in discharge tube under low pressure
5) Both have densities