The tendency of an object to resist change in its motion is known as inertia
Answer:
a

b
Explanation:
From the question we are told that
The distance of separation is 
The is distance of the screen from the slit is 
The distance between the central bright fringe and either of the adjacent bright 
Generally the condition for constructive interference is

From the question we are told that small-angle approximation is valid here.
So 
=> 
=> 
Here n is the order of maxima and the value is n = 1 because we are considering the central bright fringe and either of the adjacent bright fringes
Generally the distance between the central bright fringe and either of the adjacent bright is mathematically represented as

From the question we are told that small-angle approximation is valid here.
So

=> 
So


substituting values



In the b part of the question we are considering the next set of bright fringe so n= 2
Hence

Approximately 10kg
Given that gravity on the Moon has approximately 1/6th of the strength of gravity on Earth, a man who weighs 60kg on Earth would weigh approximately 10kg on the Moon.
Answer:
λ₂ = 357.3 nm
Explanation:
The expression for double-slit interference is
d sin θ = m λ constructive interference
d sin θ = (m + ½) λ destructive interference.
The initial data corresponds to a constructive interference, they indicate that we are in the fourth order (m = 4), let's look for the separation of the slits
d sin θ = m λ₁
now ask for destructive interference for m = 4
d sin θ = (m + ½) λ₂
we match these two expressions
m λ₁ = (m + ½) λ₂
λ₂ = ( m / m + ½) λλ₁
let's calculate
λ₂ =
λ₂ = 357.3 nm
Answer:
Explanation:
Particle Relative Mass Charge Location
Proton 1 + Nucleus
Electron 0 - Outside rings (not nucleus)
Neutron. 1 No Charge Nucleus