Answer:
Explanation:
a ) The temperature of water increases from 21.3°C to 48.4°C .
b ) Heat flow of water ( q) is positive because there is rise in temperature .
c ) The temperature of metal decreases from 99.3⁰C to 48.4⁰C .
d ) Heat flow of metal is negative because there is fall in temperature .
e ) heat loss of metal = heat gain by water
heat gain by water ( q ) = 50 x 4.2 x ( 48.4 - 21.3 )
= 5691 J
q = 5690 J . ( 3 significant figures )
heat loss of metal = mass x specific heat x fall in temp = 5691
150 x specific heat x ( 99.3 - 48.4 ) = 5691
specific heat = 5691 / (150 x 50.9 )
= .745 J / g C ( three significant figures )
Answer:
3Ba(OH)2 + 2H3PO4 —> Ba3(PO4)2 + 6H2O
Explanation:
Ba(OH)2 + H3PO4 —> Ba3(PO4)2 + H2O
There are 3 atoms of Ba on the right side and 1atom on the left side. It can be balance by putting 3 in front of Ba(OH)2 as shown below:
3Ba(OH)2 + H3PO4 —> Ba3(PO4)2 + H2O
There are 2 atoms of P on the right side and 1atom on the left. It can be balance by putting 2 in front of H3PO4 as shown below:
3Ba(OH)2 + 2H3PO4 —> Ba3(PO4)2 + H2O
Now, there are a total of 12 atoms of H on the left side and 2 atoms on the right side. It can be balance by putting 6 in front of H2O as shown below:
3Ba(OH)2 + 2H3PO4 —> Ba3(PO4)2 + 6H2O
Now the equation is balanced as the numbers of the atoms of the different elements present on both sides are equal
Global wind patterns are mainly determined by unequal heating of the earth's surface, changes in air pressure, and earth's rotation. Change in air pressure: Air mainly circulates due to change in air pressure. It moves from a region of high air pressure to the region of lower air pressure.
Answer:
Initial temperature, T1 = 99.4 Kelvin
Explanation:
<u>Given the following data;</u>
- Initial volume, V1 = 65.8 Litres
- Final temperature, T2 = 200 Kelvin
- Final volume, V2 = 132.4 Litres
To find the initial temperature (T1), we would use Charles' law;
Charles states that when the pressure of an ideal gas is kept constant, the volume of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Charles' law is given by the formula;


Making T1 as the subject formula, we have;

Substituting the values into the formula, we have;


<em>Initial temperature, T1 = 99.4 Kelvin</em>