Answer:
charges of the beads is 1.173 ×
C
Explanation:
given data
mass = 3.8589 g = 0.003859 kg
spring length = 5 cm = 0.05 m
extend spring x = 1.5747 cm = 0.15747 m
spring's extension = 0.0116 m
to find out
charges of the beads
solution
we know that force is
force = mass × g
force = 0.003859 × 9.8
force = 0.03782 N
so we know force for mass
force = -kx
so k = force / x
put here force and x value
k = -0.03782 / 0.1575
k = -0.24 N/m
and
force for spring's extension
force = -kx
force = -0.24 ( 0.0116) = 0.002784 N
so here
total length L = 0.05 + 0.0116 = 0.0616
so charges of the beads = force × L² / ke
charges of the beads = 0.002784 × (0.0616)² / (9 ×
)
so charges of the beads = 1.173 ×
C
Answer:
B)
The magnitude of induced emf in the conducting loop is 0.99 mV.
Explanation:
Rate of increase in magnetic field per unit time = 0.090 T/s
Area of the conducting loop = 110 cm^2 = 0.0110 m^2
Electromagnetic induction is the production of an emf or voltage in a coil of wire due to a changing magnetic field through the coil.
Induced e.m.f is given as:
EMF = (-N*change in magnetic field/time)*Area
EMF = rate of change of magnetic field per unit time * Area
EMF = 0.090 * 0.0110
EMF = 0.00099 V
EMF = 0.99 mV
Answer:
Twice
Explanation:
From the formula for velocity in a circle
V= 2πr/T
Where V is velocity
r is raduis
T is period
We see that as r increases V increases so if r is doubled V becomes doubled
Answer: -3.49 m/s (to the south)
Explanation:
This problem can be solved by the Conservation of Momentum principle which establishes the initial momentum
must be equal to the final momentum
, and taking into account this is aninelastic collision:
Before the collision:
(1)
After the collision:
(2)
Where:
is the mass of the car
is the velocity of the car, directed to the north
is the mass of the truck
is the velocity of the truck, directed to the south
is the final velocity of both the car and the truck
(3)
(4)
Isolating
:
(5)
(6)
Finally:
The negative sign indicates the direction of the velocity is to the south
Chemical change is any change that results in the formation of new chemical substances. At the molecular level, chemical change involves making or breaking of bonds between atoms. These changes are chemical: iron rusting (iron oxide forms) gasoline burning (water vapor and carbon dioxide form)