Kepler noticed an imaginary line drawn from a planet to the Sun and this line swept out an equal area of space in equal times, If we then draw a triangle out from the Sun to a planet’s position at one point in time, it is notice that the area doesn't change even after the planet has left the original position say like after 2 to 3days or 2hours. So to have same area of triangle means that the the planet move faster when that are closer to the sun and slowly when they are far from the sun.
This led to Kepler's law of orbital motion.
First Law: Planetary orbits are elliptical with the sun at a focus.
Second Law: The radius vector from the sun to a planet sweeps equal areas in equal times.
Third Law: The ratio of the square of the period of revolution and the cube of the ellipse semi-major axis is the same for all planets.
It is this Kepler's law that makes Newton to come up with his own laws on how planet moves the way they do.
Answer: b
Explanation:
Ec= (1/2)m × v^2
By the formula, you can see that the bigger the mass, the bigger the Cinetic Energy.
Answer:
-8.4°C
Explanation:
From the principle of heat capacity.
The heat sustain by an object is given as;
H = m× c× (T2-T1)
Where H is heat transferred
m is mass of substance
T2-T1 is the temperature change from starting to final temperature T2.
c- is the specific heat capacity of ice .
Note : specific heat capacity is an intrinsic capacity of a substance which is the energy substained on a unit mass of a substance on a unit temperature change.
Hence ; 35= 1× c× ( T2-(-25))
35= c× ( T2+25)
35 =2.108×( T2+25)
( T2+25)= 35/2.108= 16.60°{ approximated to 2 decimal place}
T2= 16.60-25= -8.40°C
C, specific heat capacity of ice is =2.108 kJ/kgK{you can google that}
It is customary to work in SI units.
Calculate the volume of the concrete.
V = 3.7*2.1*5.8 cm³ = 45.066 cm³ = 45.066 x 10 ⁻⁶ m³
The mass is 43.8 g = 43.8 x 10⁻³ kg
The density is mass/volume.
Density = (43.8 x 10⁻³ kg)/(45.066 x 10⁻⁶ m³) = 971.9 kg/m³
Answer: 971.9 kg/m³