The time difference between their landing is 2.04 seconds.
<h3>
Time of difference of the two balls</h3>
The ball thrown vertical upwards will take double of the time taken by the ball thrown vertically downwards.
Time difference, = 2t - t = t
t = √(2h/g)
where;
- h is the height of fall
- g is acceleration due to gravity
Apply the principle of conservation of energy;
¹/₂mv² = mgh
h = v²/2g
where;
h = (20²)/(2 x 9.8)
h = 20.41 m
<h3>Time of motion</h3>
t = √(2 x 20.41 / 9.8)
t = 2.04 s
Thus, the time difference between their landing is 2.04 seconds.
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1
Your answer is going to be 2m south
Answer:
134.77 mm
Explanation:
Wave length of light λ = 599 x 10⁻⁹ m
Slit separation d = 20 x 10⁻⁶ m
Screen distance D = 3 m
Distance of second dark fringe from centre
= 1.5 x λ D / d
Putting the values given above
distance = 
= 134.77 x 10⁻³ m
= 134.77 mm.
Answer:
The wavelength is 
Explanation:
From the question we are told that
The wavelength of the first light is 
The order of the first light that is being considered is
The order of the second light that is being considered is
Generally the distance between the fringes for the first light is mathematically represented as

Here D is the distance from the screen
and d is the distance of separation of the slit.
For the second light the distance between the fringes is mathematically represented as

Now given that both of the light are passed through the same double slit

=> 
=> 
=> 
=> 