im still trying to find someone who can help me
Answer:
r = 41.1 10⁹ m
Explanation:
For this exercise we use the equilibrium condition, that is, we look for the point where the forces are equal
∑ F = 0
F (Earth- probe) - F (Mars- probe) = 0
F (Earth- probe) = F (Mars- probe)
Let's use the equation of universal grace, let's measure the distance from the earth, to have a reference system
the distance from Earth to the probe is R (Earth-probe) = r
the distance from Mars to the probe is R (Mars -probe) = D - r
where D is the distance between Earth and Mars
M_earth (D-r)² = M_Mars r²
(D-r) =
r
r (
) = D
r =
We look for the values in tables
D = 54.6 10⁹ m (minimum)
M_earth = 5.98 10²⁴ kg
M_Marte = 6.42 10²³ kg = 0.642 10²⁴ kg
let's calculate
r = 54.6 10⁹ / (1 + √(0.642/5.98) )
r = 41.1 10⁹ m
Your answer is
<span>126000</span>
Answer:
The acceleration experienced by the occupants of the spaceship during launch is 282652.782 meters per square second.
Explanation:
Let suppose that spaceship is accelerated uniformly. A yard equals 0.914 meters. A feet equals 0.304 meters. If air viscosity and friction can be neglected, then acceleration (
), measured in meters per square second, is estimated by this kinematic formula:
(1)
Where:
- Travelled distance, measured in meters.
,
- Initial and final speeds of the spaceship, measured in meters.
If we know that
,
and
, then the acceleration experimented by the spaceship is:


The acceleration experienced by the occupants of the spaceship during launch is 282652.782 meters per square second.
Boiling point and acc motivation