Neither of them are used in magnets they don’t attract metal
Answer:
a)CH₄, BH₃, and CCl₄
Explanation:
<u>London dispersion forces:-
</u>
The bond for example, in the molecule is F-F, which is non-polar in nature because the two fluorine atoms have same electronegativity values.
The intermolecular force acting in the molecule are induced dipole-dipole forces or London Dispersion forces / van der Waals forces which are the weakest intermolecular force.
Out of the given options, H₂O , NH₃ exhibits hydrogen bonding which is:-
<u>Hydrogen bonding:-
</u>
Hydrogen bonding is a special type of the dipole-dipole interaction and it occurs between hydrogen atom that is bonded to highly electronegative atom which is either fluorine, oxygen or nitrogen atom.
Thus option B and C rules out.
<u>Hence, the correct option which represents the molecules which would exhibit only London forces is:- a)CH₄, BH₃, and CCl₄</u>
Because the moon gets between the Sun and the Earth so you can't see the moon
Based on the nature of chemical equilibrium, the system reached equilibrium first at the time T2.
<h3>What is chemical equilibrium?</h3>
Chemical equilibrium refers to the state of a reversible chemical reaction in which the rate of forward reaction for the the formation is equal to the rate of backward reaction for the formation of reactants.
In the table of the decomposition reaction given above, the system reached equilibrium first at the time T2 when the concentration of the reactant and products were the same.
Learn more about chemical equilibrium at: brainly.com/question/5081082