Answer:
L= 1 m, ΔL = 0.0074 m
Explanation:
A clock is a simple pendulum with angular velocity
w = √ g / L
Angular velocity is related to frequency and period.
w = 2π f = 2π / T
We replace
2π / T = √ g / L
T = 2π √L / g
We will use the value of g = 9.8 m / s², the initial length of the pendulum, in general it is 1 m (L = 1m)
With this length the average time period is
T = 2π √1 / 9.8
T = 2.0 s
They indicate that the error accumulated in a day is 15 s, let's use a rule of proportions to find the error is a swing
t = 1 day (24h / 1day) (3600s / 1h) = 86400 s
e= Δt = 15 (2/86400) = 3.5 104 s
The time the clock measures is
T ’= To - e
T’= 2.0 -0.00035
T’= 1.99965 s
Let's look for the length of the pendulum to challenge time (t ’)
L’= T’² g / 4π²
L’= 1.99965 2 9.8 / 4π²
L ’= 0.9926 m
Therefore the amount that should adjust the length is
ΔL = L - L’
ΔL = 1.00 - 0.9926
ΔL = 0.0074 m
Answer:
Acceleration from gravity is always constant and downward, but the direction and magnitude of velocity change. At the highest point in its trajectory, the ball has zero velocity, and the magnitude of velocity increases again as the ball falls back toward the earth
Explanation:
It's just 53m
Displacement usually requires a direction but as it specifies to just give magnitude you can just say 53m :)
Answer:
The answer is most likely C.
Ready-to-eat foods are stored at the top of the fridge, away from raw foods so that harmful bacteria cannot transfer from the raw food to the cooked food. Raw meat, poultry and fish in sealed containers to stop them touching or dripping onto other foods.