Ionic bonds have...
- High melting points
- Conductive properties
- Are good insulators
(Extra: Form crystal-like structures over just plain molecules!)
We make use of the equation: v^2=v0^2+2a Δd. We substitute v^2 equals to zero since the final state is halting the truck. Hence we get the equation -<span>v0^2/2a = Δd. F = m a from the second law of motion. Rearranging, a = F/m
</span>F = μ Fn where the force to stop the truck is the force perpendicular or normal force multiplied by the static coefficient of friction. We substitute, -v0^2/2<span>μ Fn/m</span> = Δd. This is equal to
The atom is the most basic unit of matter
Answer:
The moment of inertia decreased by a factor of 4
Explanation:
Given;
initial angular velocity of the ice skater, ω₁ = 2.5 rev/s
final angular velocity of the ice skater, ω₂ = 10.0 rev/s
During this process we assume that angular momentum is conserved;
I₁ω₁ = I₂ω₂
Where;
I₁ is the initial moment of inertia
I₂ is the final moment of inertia

Therefore, the moment of inertia decreased by a factor of 4