Answer:
The induced current in the resistor is I = BLv/R
Explanation:
The induced emf ε in the long bar of length, L in a magnetic field of strength, B moving with a velocity, v is given by
ε = BLv.
Now, the current I in the resistor is given by
I = ε/R where ε = induced emf in circuit and R = resistance of resistor.
So, the current I = ε/R.
substituting the value of ε the induced emf, we have
I = ε/R
I = BLv/R
So, the induced current through the resistor is given by I = BLv/R
Answer:
The average force has a magnitude 6524 N due north.
Explanation:
The average net force F = ma where m = mass of car = 1400 kg and a = acceleration.
a = (v - u)/t where u = initial velocity of car = 0 m/s (since it starts from rest)
v = final velocity of car = 27 m/s due north and t = time of motion = 5.8 s
a = (27 m/s - 0 m/s)/5.8 s = 27 m/s ÷ 5.8 s = 4.66 m/s
Since the direction of the velocity change is the direction of the acceleration, the acceleration is 4.66 m/s due north.
The average force, F = ma = 1400 kg × 4.66 m/s = 6524 N
Since the acceleration is due north, the average force takes the direction of the acceleration.
So the direction of the average force is due north
The average force has a magnitude 6524 N due north.
Answer: 116.926 km/h
Explanation:
To solve this we need to analise the relation between the car and the Raindrops. The cars moves on the horizontal plane with a constant velocity.
Car's Velocity (Vc) = 38 km/h
The rain is falling perpedincular to the horizontal on the Y-axis. We dont know the velocity.
However, the rain's traces on the side windows makes an angle of 72.0° degrees. ∅ = 72°
There is a relation between this angle and the two velocities. If the car was on rest, we will see that the angle is equal to 90° because the rain is falling perpendicular. In the other end, a static object next to a moving car shows a horizontal trace, so we can use a trigonometric relation on this case.
The following equation can be use to relate the angle and the two vectors.
Tangent (∅) = Opposite (o) / adjacent (a)
Where the Opposite will be the Rain's Vector that define its velocity and the adjacent will be the Car's Velocity Vector.
Tan(72°) = Rain's Velocity / Car's Velocity
We can searching for the Rain's Velocity
Tan(72°) * Vc = Rain's Velocity
Rain's Velocity = 116.926 km/h
Answer:
54%
Explanation:
We are given that
S.D=4.2 lb
Mean=
We have to find the percentage of household throw out at least 9 lb of paper a week.
Normal distribution formula :

We have a=9


%
Hence, the percentage of household throw out at least of paper a week=54%