Answer: A closed system, because energy can enter or leave the container, but the water molecules cannot
Explanation:
Open system: In this system energy and matter both have access to their surroundings beyond the boundaries of system. .
Closed system :In this type system only energy has an access to its surroundings beyond the boundaries of system but not matter.
Isolated system:In this type system exchange of both energy and matter are restricted to move outside the boundaries of system.
According to question, the system given is a closed system because energy is transferred from the burner to glass flask and from the glass flask to the water (matter). But water molecules are only getting condensed on the inside surface of the flask that is exchange of matter beyond the boundaries of the system is restricted. Hence, closed system ,A closed system, because energy can enter or leave the container, but the water molecules cannot.
Answer:
Yes, yield.
Explanation:
N2(g) + 3 H2(g) → 2 NH3 (g) balanced equation
First, find limiting reactant:
Moles H2 = 1.83 g x 1 mole/2 g = 0.915 moles H2
Moles N2 = 9.84 g N2 x 1 mole/28 g = 0.351 moles N2
The mole ratio of H2: N2 is 3:1, so H2 is limiting (0.915 is less than 3 x 0.351)
Theoretical yield of NH3 = 0.915 mol H2 x 2 mol NH3/3 mol H2 = 0.61 moles NH3
Answer:
4.05 × 10²² atoms
Explanation:
Step 1: Given data
Mass of nickel: 3.95 g
Step 2: Calculate the moles corresponding to 3.95 g of nickel
The molar mass of nickel is 58.69 g/mol.
3.95 g × (1 mol/58.69 g) = 0.0673 mol
Step 3: Calculate the atoms in 0.0673 moles of nickel
We will use Avogadro's number: there are 6.02 × 10²³ atoms of nickel in 1 mole of atoms of nickel.
0.0673 mol × (6.02 × 10²³ atoms/1 mol) = 4.05 × 10²² atoms
Answer:
The correct answer is - 29.45 / 100 x 25.6 = 7.5392 grams
Explanation:
It is given in the question that in 100 gms of CaSO4 there are 29.45 grams of Ca present and there is 25.6 gram of total CaSO4 sample present, So, to calculate the exact value of calcium in this given sample is:
mass of Ca = total amount of sample*percentage of calcium in sample /100
M of Ca =25.6*29.45/100
M of Ca = 7.5392 grams
Thus, the correct procedure is given by 29.45 / 100 x 25.6 = 7.5392 grams
Answer: 16.7 gallon
Explanation:
Given: The car can drive 30.3 miles when 1 gallon of gasoline is used.
Distance covered = 506.3 miles
Thus for 30.3 miles, the amount of gasoline used= 1 gallon
For 506.3 miles, the amount of gasoline used=
Thus the amount of gasoline used is 16.7 gallons.