Time t=2.4 minutes=2.4×60=144 seconds
distance s=1.2 miles=1.2×1609=1930.8 meters
speed v=s/t=1930.8÷144=[tex] \frac{1930.8}{144} = \frac{160.9}{12} =[/13.408m/s ~nearly]
Answer:
A.) 42.7 m/s
B.) 0.33 m/s^2
C.) 90 kg
Explanation:
A.) If Justin races his Chevy S-10 down highway 37 north for 2,560 meters in 60 seconds, what is his velocity?
Velocity = displacement/time
Velocity = 2560/60
Velocity = 42.67 m/s
B.) The Chevy S-10 started rounding at 10 meters per hour. What is the acceleration at 30 seconds on the highway?
Acceleration = velocity/time
Acceleration = 10/30
Acceleration = 0.33 m/s^2
C.) The S-10 has a force of 30 N. What is the mass of the car?
Force = mass × acceleration
30 = mass × 0.33
Mass = 30/ 0.33
Mass = 90 kg
Answer:
just calmly talk and get money to pay them the bike and explain it to them
Explanation:
Answer:
E = 0.01 J
Explanation:
Given that,
The mass of the cart, m = 0.15 kg
The force constant of the spring, k = 3.58 N/m
The amplitude of the oscillations, A = 7.5 cm = 0.075 m
We need to find the total mechanical energy of the system. It can be given by the formula as follows :

Put all the values,

So, the value of total mechanical energy is equal to 0.01 J.
Answer:
If a crest formed by one wave interferes with a trough formed by the other wave then the rope will not move at all.
Explanation:
Assume a straight rope tied to both ends is at rest. When a wave is created at one end of the rope, it travels to the other end of the rope through formation of alternative crest and trough. Due to these crest and trough the rope shifts up and down.
But when there are two waves travelling through the rope and both have opposite direction (directed towards one another) in such a way that crest formed by one wave is interfering with the trough formed by the other wave then due to this interference the waves will cancel the effects of each other on the rope and rope will be stable.