1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tino4ka555 [31]
2 years ago
7

Interactive Solution 8.29 offers a model for this problem. The drive propeller of a ship starts from rest and accelerates at 2.3

8 x 10-3 rad/s2 for 2.04 x 103 s. For the next 1.48 x 103 s the propeller rotates at a constant angular speed. Then it decelerates at 2.63 x 10-3 rad/s2 until it slows (without reversing direction) to an angular speed of 2.42 rad/s. Find the total angular displacement of the propeller.
Physics
1 answer:
MAXImum [283]2 years ago
4 0

Answer:

Δθ = 15747.37 rad.

Explanation:

  • The total angular displacement is the sum of three partial displacements: one while accelerating from rest to a certain angular speed, a second one rotating at this same angular speed, and a third one while decelerating to a final angular speed.
  • Applying the definition of angular acceleration, we can find the final angular speed for this first part as follows:

       \omega_{f1} = \alpha * \Delta t = 2.38*e-3rad/s2*2.04e3s = 4.9 rad/sec (1)

  • Since the angular acceleration is constant, and the propeller starts from rest, we can use the following kinematic equation in order to find the first angular displacement θ₁:

       \omega_{f1}^{2} = 2* \alpha *\Delta\theta (2)

  • Solving for Δθ in (2):

       \theta_{1} = \frac{\omega_{f1}^{2}}{2*\alpha } = \frac{(4.9rad/sec)^{2}}{2*2.38*e-3rad/sec2} = 5044.12 rad (3)

  • The second displacement θ₂, (since along it the propeller rotates at a constant angular speed equal to (1), can be found just applying the definition of average angular velocity, as follows:

       \theta_{2} =\omega_{f1} * \Delta_{t2} = 4.9 rad/s * 1.48*e3 s = 7252 rad (4)

  • Finally we can find the third displacement θ₃, applying the same kinematic equation as in (2), taking into account that the angular initial speed is not zero anymore:

       \omega_{f2}^{2} - \omega_{o2}^{2} = 2* \alpha *\Delta\theta (5)

  • Replacing by the givens (α, ωf₂) and ω₀₂ from (1) we can solve for Δθ as follows:

      \theta_{3} = \frac{(\omega_{f2})^{2}- (\omega_{f1}) ^{2} }{2*\alpha } = \frac{(2.42rad/s^{2}) -(4.9rad/sec)^{2}}{2*(-2.63*e-3rad/sec2)} = 3451.25 rad (6)

  • The total angular displacement is just the sum of (3), (4) and (6):
  • Δθ = θ₁ + θ₂ + θ₃ = 5044.12 rad + 7252 rad + 3451.25 rad
  • ⇒ Δθ = 15747.37 rad.
You might be interested in
Describe how the three methods of thermal energy transfer may take place within the iguana’s enclosure.
sasho [114]

Answer:

Heat can travel from one place to another in three ways: Conduction, Convection and Radiation. Both conduction and convection require matter to transfer heat.  Conduction is the transfer of heat between substances that are in direct contact with each other. Thermal energy is transferred from hot places to cold places by convection. Radiation is a method of heat transfer that does not rely upon any contact between the heat source and the heated object as is the case with conduction and convection. Heat can be transmitted through empty space by thermal radiation often called infrared radiation.

Explanation:

6 0
2 years ago
Read 2 more answers
Which statement is true of the electric field at a distant from the source of charge?
iVinArrow [24]

Answer:

A negative charge, if free to move in an electric field, will move from a low potential point to a high potential point. To move a positive charge against the electric field, work has to be done by you or a force external to the field.

Explanation:

Mark as Brainliest plz!!!

8 0
2 years ago
An object is 50 cm from a converging lens with a focal length of 40 cm . A real image is formed on the other side of the lens, 2
Leno4ka [110]

Answer:

d) -4.0

Explanation:

The magnification of a lens is given by

M=-\frac{q}{p}

where

M is the magnification

q is the distance of the image from the lens

p is the distance of the object from the lens

In this problem, we have

p = 50 cm is the distance of the object from the lens

q = 250 cm - 50 cm is the distance of the image from the lens (because the image is 250 cm from the obejct

Also, q is positive since the image is real

So, the magnification is

M=-\frac{200 cm}{50 cm}=-4.0

7 0
3 years ago
The diagram below shows the stars that are nearest to our solar system.
abruzzese [7]

Answer:

no u tried of the same dam

thing

Explanation:

7 0
3 years ago
Which symbol and unit of measurement are used for electric current?
Burka [1]

Answer: Symbol is I and unit A

Explanation: A represents Amperes

HOPE THIS HELPS!!!!!!!!

4 0
3 years ago
Other questions:
  • A converging lens brings rays of light together at a focal point. The bending of light rays is the result ofA. A combination of
    8·1 answer
  • What mass of a material with density rho is required to make a hollow spherical shell having inner radius r1 and outer radius r2
    7·1 answer
  • White light passes through a diffraction grating and forms rainbow patterns on a screen behind the grating. For each rainbow,
    11·1 answer
  • When a solid compound dissolves in water,
    10·1 answer
  • PLEASE HELP 15 POINTS AND BRAINIEST!!!<br> Reporting fake answers
    8·1 answer
  • Help me pls <br><br> really struggling with dat
    6·1 answer
  • I have a test for my finals can y’all help me?
    6·1 answer
  • When a constant force acts on an object, what does the object's change in momentum depend upon?
    15·1 answer
  • Which best explains how a heat pump can heat a room?
    15·2 answers
  • Which mathematically describes the wave properties of electrons?.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!