1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tino4ka555 [31]
3 years ago
7

Interactive Solution 8.29 offers a model for this problem. The drive propeller of a ship starts from rest and accelerates at 2.3

8 x 10-3 rad/s2 for 2.04 x 103 s. For the next 1.48 x 103 s the propeller rotates at a constant angular speed. Then it decelerates at 2.63 x 10-3 rad/s2 until it slows (without reversing direction) to an angular speed of 2.42 rad/s. Find the total angular displacement of the propeller.
Physics
1 answer:
MAXImum [283]3 years ago
4 0

Answer:

Δθ = 15747.37 rad.

Explanation:

  • The total angular displacement is the sum of three partial displacements: one while accelerating from rest to a certain angular speed, a second one rotating at this same angular speed, and a third one while decelerating to a final angular speed.
  • Applying the definition of angular acceleration, we can find the final angular speed for this first part as follows:

       \omega_{f1} = \alpha * \Delta t = 2.38*e-3rad/s2*2.04e3s = 4.9 rad/sec (1)

  • Since the angular acceleration is constant, and the propeller starts from rest, we can use the following kinematic equation in order to find the first angular displacement θ₁:

       \omega_{f1}^{2} = 2* \alpha *\Delta\theta (2)

  • Solving for Δθ in (2):

       \theta_{1} = \frac{\omega_{f1}^{2}}{2*\alpha } = \frac{(4.9rad/sec)^{2}}{2*2.38*e-3rad/sec2} = 5044.12 rad (3)

  • The second displacement θ₂, (since along it the propeller rotates at a constant angular speed equal to (1), can be found just applying the definition of average angular velocity, as follows:

       \theta_{2} =\omega_{f1} * \Delta_{t2} = 4.9 rad/s * 1.48*e3 s = 7252 rad (4)

  • Finally we can find the third displacement θ₃, applying the same kinematic equation as in (2), taking into account that the angular initial speed is not zero anymore:

       \omega_{f2}^{2} - \omega_{o2}^{2} = 2* \alpha *\Delta\theta (5)

  • Replacing by the givens (α, ωf₂) and ω₀₂ from (1) we can solve for Δθ as follows:

      \theta_{3} = \frac{(\omega_{f2})^{2}- (\omega_{f1}) ^{2} }{2*\alpha } = \frac{(2.42rad/s^{2}) -(4.9rad/sec)^{2}}{2*(-2.63*e-3rad/sec2)} = 3451.25 rad (6)

  • The total angular displacement is just the sum of (3), (4) and (6):
  • Δθ = θ₁ + θ₂ + θ₃ = 5044.12 rad + 7252 rad + 3451.25 rad
  • ⇒ Δθ = 15747.37 rad.
You might be interested in
Refrigerant-134a enters the condenser of a residential heat pump at 800 kPA and 35oC at a rate of 0.018 kg/s and leaves at 800 k
Assoli18 [71]

Answer:

(A) COP = 2.64

(B) rate of heat absorption= 1.9637 kW

Explanation:

mass flow rate (m) = 0.018 kg/s

work input (Win) = 1.2kW

inlet pressure (P1) = 800kPa

inlet temperature (T1) = 35 degree Celsius

h1 = 271.24 KJ/Kg

outlet pressure (P2) = 800 kPa

outlet temperature (T2) = ?

entalphy (h2) = 95.48 KJ/Kg

The entalphies are gotten from tables for refrigerant 134a at the temperatures and pressures above

(A) COP = Qh ÷ Win

     where Qh  = m(h1 -h2) from the energy balance equation

     Qh = 0.018 ( 271.24 - 95.48 ) = 3.1637 kW

     COP = 3.1637 ÷ 1.2 = 2.64

(B) rate of heat absorption = Qh - Win

    = 3.1637 - 1.2 = 1.9637 kW

5 0
3 years ago
Electric charges are either positive or ____
fenix001 [56]

Answer:

Negative

Explanation:

duh

4 0
4 years ago
Read 2 more answers
True or False. Electromagnetic waves travel fastest through a vacuum.
olya-2409 [2.1K]
This
 is
 true 
Electromagnetic waves travel fastest through vacuum
4 0
3 years ago
A wave is a disturbance that carries from one place to another through matter of space
krok68 [10]

There's supposed to be a blank in the statement, where the answer is supposed to be inserted.

The question is supposed to say: "A wave is a disturbance that carries ______ from one place to another through matter or space".

To answer the question, write the word "<em>energy</em>" in the blank.

4 0
3 years ago
A 150kg person stands on a compression spring with spring constant 10000n/m and nominal length of 0.50.what is the total length
Ivahew [28]

Answer:

<em>The total length of the spring would be 0.65 m</em>

Explanation:

The Concept

Hooke's law evaluates the increment of  spring in relation to the force acting on the body. Hooke's law states that for a spring undergoing deformation, the  force applied is directly proportional to the deformation experienced by the spring. Hooke's law is represented thus;

F = k x ..................1

where F is the force applied to the spring

k is the spring constant

x is the spring stretch or extension

Step by Step Calculations

We have to obtain x before adding it to the nominal length, We make x the subject formula in equation 1;

x = F/k

but F = m x g

so, x = (m x g)/k

given that, the mass of the person m =150 kg

g is the acceleration due to gravity = 9.81 m/s^{2}

k is the spring constant = 10000 N/m

then x = (9.81 m/s^{2} x 150 kg)/10000 N/m

x = 0.14715 m

the extension experienced by the spring after the compression is 0.14715 m

The total length of the spring would be;

L = 0.14715 m + 0.5 m = 0.64715

L ≈  0.65 m

Therefore the total length of the spring would be 0.65 m

4 0
3 years ago
Other questions:
  • Two small spheres spaced 20.0 cm apart have equal charge. how many excess electrons must be present on each sphere if the magnit
    8·1 answer
  • Which characteristics of Earth’s orbit are in agreement with Kepler’s second law? Check all that apply.
    14·2 answers
  • Which of the following actions would require the company to obtain a permit for discharge from the EPA? a. Releasing water back
    5·1 answer
  • What of an object is given relative to an origin
    7·2 answers
  • In a 120-volt circuit having a resistance of 12 ohms, the power W in watts when a current I is flowing through is given by W=120
    7·1 answer
  • Which of the following is a result of the transfer of energy?
    9·2 answers
  • Which type of electromagnetic waves would the best to use in an object designed to cook food?
    14·1 answer
  • How much power is required to lift a 2.00-kg object 5.00 meters in 4.50 seconds? (If there is a formula for this please, tell me
    8·1 answer
  • 10. On Christmas Eve night when all the Who's are sleeping, are they still using energy? Explain this by using
    5·1 answer
  • What most directly determines an object's state of matter? (Please help)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!