(h + .16) m g = 1/2 k x^2 total PE of block relative to where it stops
(h + .16) .82 * 9.8 = .5 * 120 * .16^2 PE released = PE of spring
8.04 h + 1.29 = 1.536
h = (1.536 - 1.29) / 8.04 = .031 m = 3.1 cm
Answer:
formula used K=F/∆l
∆l is the elongation of the spring
- F=10N
- ∆l=20mm===> 0.02m
- K=10N divided 0.02m= 500N/m
Answer:
1.125m/s^2
Explanation:
Since acceleration is defined as the rate of change in velocity with respect to time. Mathematically
v^2= u^2+2as
Where a,v,u and s are the acceleration, final velocity, initial velocity and distance respectively.
a = ?
u = 0m/s
v = 15m/s
s = 100m
Substituting the values into the formula above
v^2= u^2+2as
15^2=0^2+2×a×100
225= 0+200a
225= 200a
Divide both sides by 200
225/200 = 200a/200
a= 1.125m/s^2
Hence the acceleration of the car is 1.125m/s^2.
Note that the car accelerated uniformly from rest, that was why the initial velocity was 0m/s
<em>An is formed when an atom loses or gains one or more electrons. Because the number of electrons in an ion is different from the number of protons, an ion does have an overall electric charge. Consider how a positive ion can form from an atom. The left side of the illustration below represents a sodium (Na) atom</em>