1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mojhsa [17]
4 years ago
10

marcy has 567 earmuffs in stock if she can put 18 earmuffs on each shelf about how many shevles does she need for all the earmuf

fs
Mathematics
2 answers:
Gelneren [198K]4 years ago
6 0
567/18 = 31.5 shelves 
i would round to 32 because you can't have half a shelf. 
Andrei [34K]4 years ago
3 0
To get our answer we divide 567 by 18
567 ÷ 18 = 31
your answer is 31
You might be interested in
Un deposito de agua tiene forma de prisma rectangular con los lados de la base de 25 y 20 metros. Calcula la altura que pueda co
serious [3.7K]

Answer:

La altura del depósito para que pueda contener 1000 metros cúbicos de agua es 2 m.

Step-by-step explanation:

Para calcular el volumen de un prisma rectangular, es necesario multiplicar sus 3 dimensiones: longitud*ancho*altura. El volumen se expresa en unidades cúbicas.

En este caso, se conoce la longitud y el ancho, cuyos valores son 25 y 20 metros. A su vez, se sabe que el depósito de agua debe contener 1000 m³. Entonces, siendo:

Volumen= longitud*ancho*altura

Y reemplazando los valores se obtiene:

1000 m³= 25 m* 20 m* altura

Resolviendo:

1000 m³= 500 m²* altura

altura=\frac{1000 m^{3} }{500 m^{2} }

altura= 2 m

<u><em>La altura del depósito para que pueda contener 1000 metros cúbicos de agua es 2 m.</em></u>

7 0
3 years ago
Proportions happen because two events or scenarios are ___
Anni [7]
<span>Proportions happen because two events or scenarios are related or associated with one another </span>
6 0
3 years ago
What types of solutions does 6x^2 - 20x + 1 have?​
elena55 [62]

Answer:

2 real solutions

Step-by-step explanation:

We can use the determinant, which says that for a quadratic of the form ax² + bx + c, we can determine what kind of solutions it has by looking at the determinant of the form:

b² - 4ac

If b² - 4ac > 0, then there are 2 real solutions. If b² - 4ac = 0, then there is 1 real solution. If b² - 4ac < 0, then there are 2 imaginary solutions.

Here, a = 6, b = -20, and c = 1. So, plug these into the determinant formula:

b² - 4ac

(-20)² - 4 * 6 * 1 = 400 - 24 = 376

Since 376 is clearly greater than 0, we know this quadratic has 2 real solutions.

<em>~ an aesthetics lover</em>

3 0
3 years ago
4x<br>f(x)=<br>x -3 togetherness​
frozen [14]

Answer:

f(x)=2(\dfrac{2}{3})^x.

Step-by-step explanation:

f(x)=1/2(2)xf(x)=3/4(-1/5)xf(x)=(7/2)xf(x)=2(2/3)x

3 0
4 years ago
Suppose X, Y, and Z are random variables with the joint density function f(x, y, z) = Ce−(0.5x + 0.2y + 0.1z) if x ≥ 0, y ≥ 0, z
dexar [7]

Answer:

The value of the constant C is 0.01 .

Step-by-step explanation:

Given:

Suppose X, Y, and Z are random variables with the joint density function,

f(x,y,z) = \left \{ {{Ce^{-(0.5x + 0.2y + 0.1z)}; x,y,z\geq0  } \atop {0}; Otherwise} \right.

The value of constant C can be obtained as:

\int_x( {\int_y( {\int_z {f(x,y,z)} \, dz }) \, dy }) \, dx = 1

\int\limits^\infty_0 ({\int\limits^\infty_0 ({\int\limits^\infty_0 {Ce^{-(0.5x + 0.2y + 0.1z)} } \, dz }) \, dy } )\, dx = 1

C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y }(\int\limits^\infty_0 {e^{-0.1z} } \, dz  }) \, dy  }) \, dx = 1

C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0{e^{-0.2y}([\frac{-e^{-0.1z} }{0.1} ]\limits^\infty__0 }) \, dy  }) \, dx = 1

C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}([\frac{-e^{-0.1(\infty)} }{0.1}+\frac{e^{-0.1(0)} }{0.1} ])  } \, dy  }) \, dx = 1

C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}[0+\frac{1}{0.1}]  } \, dy  }) \, dx =1

10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2y} }{0.2}]^\infty__0  }) \, dx = 1

10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2(\infty)} }{0.2}+\frac{e^{-0.2(0)} }{0.2}]   } \, dx = 1

10C\int\limits^\infty_0 {e^{-0.5x}[0+\frac{1}{0.2}]  } \, dx = 1

50C([\frac{-e^{-0.5x} }{0.5}]^\infty__0}) = 1

50C[\frac{-e^{-0.5(\infty)} }{0.5} + \frac{-0.5(0)}{0.5}] =1

50C[0+\frac{1}{0.5} ] =1

100C = 1 ⇒ C = \frac{1}{100}

C = 0.01

3 0
3 years ago
Other questions:
  • A survey finds that 40% of students ride in a car to school. Eri would like to estimate the probability that if 3 students were
    11·1 answer
  • What else would need to be congruent to show that ABC = XYZ by ASA?
    13·1 answer
  • you are trying to increase your monthly savings to buy a used car your boss allows you to work one hour of overtime at time and
    14·1 answer
  • Can someone help me find the slope shown on this line please
    6·1 answer
  • Please answer due at 11:59 pm
    13·2 answers
  • Which expression is equivalent to –(3 + 4x)?
    13·1 answer
  • The graph shows the cube root parent function.
    11·2 answers
  • Need help with this probkem
    13·1 answer
  • The verticies of a triangle are formed by the intersections of 3 lines: y=x x=6 y= -1/3x +4 (graph it please. also it's due in l
    14·1 answer
  • A tomato sauce recipe calls for 3/4 Cups of basil for each 1/8 teaspoon of salt. If 1 cup of basil
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!