1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gre4nikov [31]
2 years ago
9

The duckbill platypus and spiny anteater are the only two known

Physics
1 answer:
Iteru [2.4K]2 years ago
3 0

Answer:

I believe it is False.

Explanation:

Hope my answer has helped you!

You might be interested in
Energy is the energy an object has because it is in motion. *
Mrrafil [7]

The energy an object has due to its motion is called kinetic energy.

3 0
1 year ago
what is a point of view of an object used to determine another obejects motion i nedd help asap plsss​
Igoryamba
A believe that’s called a reference point.
9 0
3 years ago
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
2 years ago
Read 2 more answers
In a photoelectric experiment, you shine light onto an electrode and record a current of 25 μA. When you apply +500 mV to the el
kkurt [141]

Answer:

2.083 V.

Explanation:

Stopping potential is the potential that is required to stop the current to zero . This potential is applied externally to oppose the potential created by the photoelectric effect . It gives the measure the photoelectric potential being generated .

Here current drops to 25 μA to 19 μA by a potential of 500mV

Change in current

= 25 - 19 = 6 μA

Voltage requirement for unit reduction in current

= 500 / 6 μA

To reduce current 0f 25 μA

requirement of V = (500 / 6 )  x 25 =   2083.33 mV = 2.083 V.

7 0
2 years ago
A planned high-speed train between Houston and Dallas will travel a distance of 386 kilometers in 5.40 × 10^3 seconds. What is t
Mazyrski [523]

¡Hellow!

For this problem, first, lets convert the seconds in hours:

5,4x10³\rightarrow 5400

h = sec / 3600

h = 5400 s / 3600

h = 1,5

Let's recabe information:

d (Distance) = 386 km

t (Time) = 1,5 h

v (Velocity) = ?

For calculate velocity, let's applicate formula:

                                                    \boxed{\boxed{\textbf{d = v * t} } }

Reeplace according we information:

386 km = v * 1,5 h

v = 386 km / 1,5 h

v = 257,33 km/h

The velocity of the train is of <u>257,33 kilometers for hour.</u>

<u></u>

Extra:

For convert km/h to m/s, we divide the velocity of km/h for 3,6:

m/s = km/h / 3,6

Let's reeplace:

m/s = 257,33 km/h / 3,6

m/s = 71,48

¿Good Luck?

7 0
3 years ago
Other questions:
  • What is the process whereby salt is removed from salt water​
    11·1 answer
  • Slow moving vehicles that travel at a speed less than ___ mph will have an orange reflective triangle with red around the edges
    7·1 answer
  • A cell converts What energy
    6·1 answer
  • A mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. Initially, the mass is released from rest fro
    8·1 answer
  • Which theory was first proposed by Albert Einstein
    14·2 answers
  • Exactly one turn of a flexible rope with mass m is wrapped around a uniform cylinder with mass M and radius R.
    8·1 answer
  • An object is dropped at a height of 6 m from the ground. How fast is it moving just before it hits the ground?
    15·1 answer
  • What is the order of magnitude of the gravitational force between two 1.0 kilogram charges that are positioned 1.0 meter apart?
    11·2 answers
  • A student lifts a box of books 2 meters with a force of 45 N. He then carries the box 10 meters to the living room. What is the
    12·1 answer
  • How high does Pete lift his sledge hammer if he used a force of 25N to lift the hammer while doing 50J of work?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!