Explanation:
The temperature must be hot enough to allow the ions of deuterium and tritium to have enough kinetic energy to overcome the Coulomb barrier and fuse together. The ions must be confined with a high ion density to achieve a suitable fusion reaction rate.
<span> The boiling point of water at sea level is 100 °C. At higher altitudes, the boiling point of water will be.....
a) higher, because the altitude is greater.
b) lower, because temperatures are lower.
c) the same, because water always boils at 100 °C.
d) higher, because there are fewer water molecules in the air.
==> e) lower, because the atmospheric pressure is lower.
--------------------------
Water boils at a lower temperature on top of a mountain because there is less air pressure on the molecules.
-------------------
I hope this is helpful. </span>
I say it helped then because TrueType had room
Answer:
- 2.7 x 10^-6 J
Explanation:
q1 = 1 nC at x = 0 cm
q2 = - 1 nC at x = 1 cm
q3 = 4 nC at x = 2 cm
The formula for the potential energy between the two charges is given by

where r be the distance between the two charges
By use of superposition principle, the total energy of the system is given by



U = - 2.7 x 10^-6 J
Answer:
C. Recheck the numbers of each atom on each side of the equation
to make sure the sides are equal.
D. Choose coefficients that will balance the equation
Explanation:
In balancing of chemical equation, the number of atoms on both sides must be equal in adherence to the law of conservation of mass.
Using the method of inspection, the equation is first observed to know the relationship between the combining atoms and the resulting ones.
After observing the reaction, put a coefficient that will balance the equation. Then recheck the number of each atom on both side of the equation. One can repeat the process till the equation is balanced.