The energy of a wave is directly proportional to the square of the amplitude of the wave.
<h3>What is the relationship between energy and amplitude?</h3>
There is direct relationship between energy of the wave and the amplitude of the wave. The energy transported by a wave is directly proportional to the square of the amplitude of the wave. This means if energy is increase the amplitude of wave becomes double and vice versa.
Energy = (amplitude)2
So we can conclude that the energy of a wave is directly proportional to the square of the amplitude of the wave.
Learn more about energy here: brainly.com/question/13881533
#SPJ1
Answer:

Explanation:
It is given that,
Mass of the golf ball, m = 46 g = 0.046 kg
Terminal speed of the ball, v = 44 m/s
The drag force, 
Where, C is the drag coefficient. At terminal speed, the weight of the ball is balanced by the drag force.




Hence, this is the required solution.
Answer:
So the answer would be water based on the evidence shown below.
Explanation:
Mercury is a poor conductor of heat but good for electricity, water is a good conductor of heat but a poor conductor of electricity, wood is a poor conductor of heat and electricity, and glass is probably the worst conductor of heat.
Answer:
f = 485.62 N
Explanation:
Since, the bag is moving with some acceleration. Hence, the unbalanced force will be given as:
Unbalanced Force = Horizontal Component Applied Force - Frictional Force
Unbalanced Force = Fx - f
But, from Newtons Second Law of Motion:
Unbalanced Force = ma
comparing the equations:
ma = Fx - f
f = F Cos θ - ma
where,
f = frictional force = ?
F = Applied force = 593 N
m = mass of person = 49 kg
a = acceleration = 0.57 m/s²
θ = Angle with horizontal = 30°
Therefore,
f = (593 N)(Cos 30°) - (49 kg)(0.57 m/s²)
f = 513.55 N - 27.93 N
<u>f = 485.62 N</u>
Answer:
29.96m/s
Explanation:
Given parameters:
Initial speed = 25.5m/s
Acceleration = 1.94m/s²
Time = 2.3s
Unknown:
Final speed of the car = ?
Solution:
To solve this problem, we are going to apply the right motion equation:
v = u + at
v is the final speed
u is the initial speed
a is the acceleration
t is the time taken
Now insert the parameters and solve;
v = 25.5 + (1.94 x 2.3) = 29.96m/s