The heat released by the water when it cools down by a temperature difference
is
where
m=432 g is the mass of the water
is the specific heat capacity of water
is the decrease of temperature of the water
Plugging the numbers into the equation, we find
and this is the amount of heat released by the water.
Answer:
Fy = 14.3 [N]
Explanation:
To be able to solve this problem we must know that the force is a vector and has magnitude and direction, therefore it can be decomposed into the force in the X & y components:
When we have the components on the horizontal and vertical axes we must use the Pythagorean theorem.
where:
F = 15 [N]
Fx = horizontal component = 4.5 [N]
Fy = vertical component [N]
Answer:
u = - 38.85 m/s^-1
Explanation:
given data:
acceleration = 2.10*10^4 m/s^2
time = 1.85*10^{-3} s
final velocity = 0 m/s
from equation of motion we have following relation
v = u +at
0 = u + 2.10*10^4 *1.85*10^{-3}
0 = u + (21 *1.85)
0 = u + 38.85
u = - 38.85 m/s^-1
negative sign indicate that the ball bounce in opposite directon
He is discussing Bargaining Power of Buyers competitive force.
What do you understand by leverage?
The employment of various financial instruments or borrowed cash, or leverage, is an investing strategy that aims to improve an investment's potential return. The level of debt a company utilizes to finance its assets is another definition of leverage.
It offers a range of funding options so that the company can reach its desired earnings. Leverage is a crucial investing strategy because it enables businesses to establish a ceiling for the growth of their operations.
Leverage can be used, for instance, to support financially a new business. Purchasing fixed assets or borrowing money in the form of a loan from another business or person can serve as examples of leverage.
To learn more about leverage, visit: brainly.com/question/14230485
#SPJ4
Answer:
The “terminal speed” of the ball bearing is 5.609 m/s
Explanation:
Radius of the steel ball R = 2.40 mm
Viscosity of honey η = 6.0 Pa/s
While calculating the terminal speed in liquids where density is high the stokes law is used for viscous force and buoyant force is taken into consideration for effective weight of the object. So the expression for terminal speed (Vt)
Substitute the given values to find "terminal speed"
The “terminal speed” of the ball bearing is 5.609 m/s