Answer: 0.0725ppm
Explanation:
133.4g of MgBr2 dissolves in 1.84L of water.
Therefore Xg of MgBr2 will dissolve in 1L of water. i.e
Xg of MgBr2 = 133.4/1.84 = 72.5g
The concentration of MgBr2 is 72.5g/L = 0.0725mg/L
Recall,
1mg/L = 1ppm
Therefore, 0.0725mg/L = 0.0725ppm
Answer: The average potential energy of the PIB is 0 irrespective of the wave function.
Explanation:
⟨H⟩=⟨KE⟩+⟨V⟩
the nn quantum number
⟨KE⟩=(π^2 ℏ^2)/(2mL^2 )
the average kinetic energy of the wavefunction is dependent on
⟨V⟩=∫sin(kx)0sin(kx)dx=0
The average potential energy of the PIB is 0 irrespective of the wave function.
⟨H⟩=⟨KE⟩=(π^2 ℏ^2)/(2mL^2 )
The chemical formula : 3HgBr₂(Mercury(II) bromide)
<h3>Further explanation</h3>
Given
The chemical formulas of Mercury and Bromine
Required
The appropriate chemical formula
Solution
A molecular formula is a formula that shows the number of atomic elements that make up a compound.
The number of molecules is determined by the coefficient in front of the compound
the number of atoms is determined by the subscript after the atom and the coefficient
Three molecules⇒ coefficient = 3
one atom of Mercury ⇒Hg
two atoms of Bromine ⇒ Br₂
The chemical formula : 3HgBr₂