<h3>
Answer:</h3>
B. C7H16 + 11O2 → 7CO2 + 8H2O
<h3>
Explanation:</h3>
- In a balanced chemical equation, the number of atoms of each element is equal on both sides of the equation.
- In this case, the balanced chemical equation is;
C7H16 + 11O2 → 7CO2 + 8H2O
Because, it has 7 carbon atoms, 16 hydrogen atoms and 22 oxygen atoms on each side of the equation.
- When an equation is balanced it obeys the law of conservation of mass such that the mass of reactants will be equal to the mass of products.
A covalent bond describes two atoms (most likely nonmetals) that share their valence electrons to satisfy the octet rule. Carbon and oxygen are both nonmetals, and they would share electrons with each other through a bond that is not polar enough to be considered ionic. The answer should be B
<span>D. It shows that the electrons within an atom do not have sharp boundaries.</span>
Answer:
a. True
b. True
c. False
d. True
Explanation:
a). A a very low substrate concentration ,
. Thus according to the Machaelis-Menten equation becomes
![$V_0 = \frac{V_{max} \times [S]}{Km}$](https://tex.z-dn.net/?f=%24V_0%20%3D%20%5Cfrac%7BV_%7Bmax%7D%20%5Ctimes%20%5BS%5D%7D%7BKm%7D%24)
Here since the
varies directly to the substrate concentration [S], the initial velocity is lower than the maximal velocity. Thus option (a) is true.
b). The Michaelis -Menten kinetics equation states that :
![$V_0 = \frac{V_{max} \times [S]}{Km+[S]}$](https://tex.z-dn.net/?f=%24V_0%20%3D%20%5Cfrac%7BV_%7Bmax%7D%20%5Ctimes%20%5BS%5D%7D%7BKm%2B%5BS%5D%7D%24)
Here the initial velocity changes directly with the substrate concentration as
is directly proportional to [S]. But
is same for any particular concentration of the enzymes. Thus, option (b) is true.
c). As the substrate concentration increases, the initial velocity also increases. Thus option (c) is false.
d). Option (d) explains the procedures to estimate the initial velocity which is correct. Thus, option (d) is true.
Answer,
For example, silver ion can be precipitated with hydrochloric acid to yield solid silver chloride. Because many cations will not react with hydrochloric acid in this way, this simple reaction can be used to separate ions that form insoluble chlorides from those that do not.