Gold has a heavy enough nucleus that its electrons must travel at speeds nearing the speed of light to prevent them from falling into the nucleus. This relativistic effect applies to those orbitals that have appreciable density at the nucleus, such as s and p orbitals. These relativistic electrons gain mass and as a consequence, their orbits contract. As these s and (to some degree) p orbits are contracted, the other electrons in d and f orbitals are better screened from the nucleus and their orbitals actually expand.
Since the 6s orbital with one electron is contracted, this electron is more tightly bound to the nucleus and less available for bonding with other atoms. The 4f and 5d orbitals expand, but can't be involved in bond formation since they are completely filled. This is why gold is relatively unreactive.
Hope it helps
Answer:
The pH of the solution will be 7.53.
Explanation:
Dissociation constant of KClO=
Concentration of acid in 1 l= 0.30 M
Then in 200 ml = 
The concentration of acid, HClO=[acid]= 0.006 M
Concentration of salt in 1 L = 0.20 M
Then in 300 ml = 
The concentration of acid, KClO=[salt]= 0.006 M
The pH of the solution will be given by formula :
![pH=pK_{a}^o+\log\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%5Eo%2B%5Clog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
![pH=-\log[2.8\times 10^{-8}]+\frac{[0.06 M]}{[0.06 M]}](https://tex.z-dn.net/?f=pH%3D-%5Clog%5B2.8%5Ctimes%2010%5E%7B-8%7D%5D%2B%5Cfrac%7B%5B0.06%20M%5D%7D%7B%5B0.06%20M%5D%7D)
The pH of the solution will be 7.53.
Probably sodium Na because it has a similar atomic mass and number