Answer:
1.25 M
Explanation:
Step 1: Given data
Mass of KI (solute): 20.68 g
Volume of the solution: 100 mL (0.100 L)
Step 2: Calculate the moles of solute
The molar mass of KI is 166.00 g/mol.
20.68 g × 1 mol/166.00 g = 0.1246 mol
Step 3: Calculate the molar concentration of KI
Molarity is equal to the moles of solute divided by the liters of solution.
M = 0.1246 mol/0.100 L= 1.25 M
Answer:
A. Na₂SO₄ and HCl
C. Polar solutes are soluble in polar solvents but are insoluble in non-polar solvents Non-polar solutes are insoluble in polar solvents but are are soluble in non-polar solvents
Ionic solutes are soluble in polar solvents but are insoluble in non-polar solvents.
Like dissolves like simply means that molecules of substances having similar chemical properties dissolve in each other
Explanation:
A. Ionic substances like Na₂SO₄ are composed of charged particles called ions. These ions are either positively charged or negatively charged, therefore, they are attracted to substances of opposite charges. Also, polar molecules like HCl contains two oppositely charged ends. A polar solvent consists of molecules with two oppositely charged ends, therefore, ionic substances as well polar substances dissolve in them according to the concept of like dissolves like.
Gasoline being non-polar will only dissolve in like substances, polar solvents.
C. Polar solutes are soluble in polar solvents but are insoluble in non-polar solvents Non-polar solutes are insoluble in polar solvents but are are soluble in non-polar solvents
Ionic solutes are soluble in polar solvents but are insoluble in non-polar solvents.
The statement "Like dissolves like" simply means that molecules of substances having similar chemical properties dissolve in each other. For example gasoline, a non-polar substance will dissolve only in a non-polar solvent like kerosene. Also, HCl, a polar molecule will dissolve in a polar solvent like water.
Answer:
Explanation:
<u>1) Data:</u>
a) V = 93.90 ml
b) T = 28°C
c) P₁ = 744 mmHg
d) P₂ = 28.25 mmHg
d) n = ?
<u>2) Conversion of units</u>
a) V = 93.90 ml × 1.000 liter / 1,000 ml = 0.09390 liter
b) T = 28°C = 28 + 273.15 K = 301.15 K
c) P₁ = 744 mmHg × 1 atm / 760 mmHg = 0.9789 atm
d) P₂ = 28.5 mmHg × 1 atm / 760 mmHg = 0.0375 atm
<u>3) Chemical principles and formulae</u>
a) The total pressure of a mixture of gases is equal to the sum of the partial pressures of each gas. Hence, the partical pressure of the hydrogen gas collected is equal to the total pressure less the vapor pressure of water.
b) Ideal gas equation: pV = nRT
<u>4) Solution:</u>
a) Partial pressure of hydrogen gas: 0.9789 atm - 0.0375 atm = 0.9414 atm
b) Moles of hygrogen gas:
pV = nRT ⇒ n = pV / (RT) =
n = (0.9414 atm × 0.09390 liter) / (0.0821 atm-liter /K-mol × 301.15K) =
n = 0.00358 mol (which is rounded to 3 significant figures) ← answer
Answer:
6M
Explanation:
(Molarity x Volume)concentrated soln = (Molarity x Volume)diluted doln
Molarity dilute soln = [(M x V)conc/V (dilute)] = 1.5L x 12M / 3.0L = 6M final dilute soln