Answer:
Iron has 5 unpaired electrons in Fe⁺³ state.
Explanation:
Iron having atomic number 26 has following electronic configuration in neutral state.
Fe = 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d⁶
When Iron looses three electrons it attains +3 charge with following electronic configuration.
Fe⁺³ = 1s², 2s², 2p⁶, 3s², 3p⁶, 3d⁵
The five electrons in d-orbital exist in unpaired form as,
3(dz)¹, 3d(xz)¹, 3d(yz)¹, 3d(xy)¹, 3(dx²-y²)¹
Answer:
Ka = 6.02x10⁻⁶
Explanation:
The equilibrium that takes place is:
We <u>calculate [H⁺] from the pH</u>:
- [H⁺] =

Keep in mind that [H⁺]=[A⁻].
As for [HA], we know the acid is 0.66% dissociated, in other words:
We <u>calculate [HA]</u>:
Finally we <u>calculate the Ka</u>:
- Ka =
= 6.02x10⁻⁶
Answer:
the answer should be henry's law
Answer:
1. 505g is the mass of the aluminium.
2. The answer is in the explanation
Explanation:
1. To solve this question we need to find the volume of the rectangle. With the volume and density we can find the mass of the solid:
Volume = 7.45cm*4.78cm*5.25cm
Volume = 187cm³
Mass:
187cm³ * (2.702g/cm³) = 505g is the mass of the aluminium
2. When the temperature of a liquid increases, the volume increases doing the density decreases because density is inversely proportional to volume. And works in the same way for gases because the temperature produce more collisions and the increasing in volume.
Explanation:
The solubility curve helps us to compare the solubility of difference substances at same temperature. It gives the idea that solubility changes with the temperature. The solubility curve helps us to predict which substance will crystalize out first from hot solution containing two or more solutes.