Given an equilibrium constant value of 7.2 x 10-4 it is false to say that the reaction proceeds essentially to completion.
<h3>What is the equilibrium constant?</h3>
In a reaction, we can judge using the value of the equilibrium constant weather or not the reaction moves on to completion. If the reaction moves up to completion, it the follows that the value of the equilibrium constant ought to be large.
On the other hand, when we have a case that the equilibrium constant is small and is not so large, then the reaction does not proceed essentially to completion.
Given an equilibrium constant value of 7.2 x 10-4 it is false to say that the reaction proceeds essentially to completion.
Learn more about equilibrium constant:brainly.com/question/10038290
#SPJ1
Answer:
Bond energy of carbon-fluorine bond is 485 kJ/mol
Explanation:
Enthalpy change for a reaction, is given as:
![\Delta H_{rxn}=\sum [n_{i}\times (E_{bond})_{i}]-\sum [n_{j}\times (E_{bond})_{j}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn_%7Bi%7D%5Ctimes%20%28E_%7Bbond%7D%29_%7Bi%7D%5D-%5Csum%20%5Bn_%7Bj%7D%5Ctimes%20%28E_%7Bbond%7D%29_%7Bj%7D%5D)
Where
and
represents average bond energy in breaking "i" th bond and forming "j" th bond respectively.
and
are number of moles of bond break and form respectively.
In this reaction, one mol of C=C, four moles of C-H and one mol of F-F bonds are broken. One mol of C-C bond, four moles of C-H bonds and two moles of C-F bonds are formed
So, 
or, 
or, 
So bond energy of carbon-fluorine bond is 485 kJ/mol
Answer:
In chemistry, a single bond is a chemical bond between two atoms involving two valence electrons. That is, the atoms share one pair of electrons where the bond forms. Therefore, a single bond is a type of covalent bond.
Explanation:
(copied from Google)
Answer:
Explanation: The chemical reaction is written by writing down the chemical formulas of the reactants on the left hand side and the chemical formulas of products on the right hand side separated by a right arrow.
This is a single displacement reaction in which a more reactive element displaces the less reactive element from its salt solution. Thus sodium is more reactive than Mg and thus displaces it from
.

The number of atoms of each element must be same on both sides of the reaction so as to follow the law of conservation of mass.
Thus the equation is balanced.
They are pumped across the mitochondrial inner membrane against their concentration gradient (to where their concentration is high); as the H+ ions flow back to where their concentration is low, they drive ATP synthase to form ATP