<u>Answer:</u> The rate law of the reaction is ![\text{Rate}=k[HgCl_2][C_2O_4^{2-}]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5BC_2O_4%5E%7B2-%7D%5D%5E2)
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
For the given chemical equation:

Rate law expression for the reaction:
![\text{Rate}=k[HgCl_2]^a[C_2O_4^{2-}]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5Ea%5BC_2O_4%5E%7B2-%7D%5D%5Eb)
where,
a = order with respect to 
b = order with respect to 
Expression for rate law for first observation:
....(1)
Expression for rate law for second observation:
....(2)
Expression for rate law for third observation:
....(3)
Expression for rate law for fourth observation:
....(4)
Dividing 2 from 1, we get:

Dividing 2 from 3, we get:

Thus, the rate law becomes:
![\text{Rate}=k[HgCl_2]^1[C_2O_4^{2-}]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5E1%5BC_2O_4%5E%7B2-%7D%5D%5E2)
The more acidic the substance is, the more the iron nails will corrode (this obviously depends on what your experiment is but hope this helped in some way)
Answer:
Their positive charge is located in the small nucleus
Explanation:
Ernest Rutherford performed the gold foil experiment in 1911 where he used alpha particles generated from a radioactive source to bombard a thin gold foil.
In his experiment, he observed that the bulk of the alpha particles passed through the gold foil, just a tiny fraction was deflected back. To explain his findings, Rutherford proposed that an atom is made of positively charged centre where nearly all the mass is concentrated called nucleus. Surrounding the nucleus is a large space containing electrons.
75km/hr
A car traveling with constant speed travels 150km in 7200 s. What is the speed of the car