Answer:
heterotrophs
Explanation:
According to the parameters established by biology, all living beings that require others to feed themselves are considered heterotrophs, that is, they are not able to produce their food within their organism but rather they must consume elements of nature already constituted as food, already synthesized by other organisms. Among the most prominent heterotrophs, all animals, bacteria and humans stand out.
The term heterotroph comes from the Greek, language in which the prefix hetero means different and trophies means food. In this way, the heterotroph is one that feeds on elements other than one, which takes elements from nature, from the surrounding space to feed. While autotrophic beings have the ability to synthesize inorganic elements such as light, water, carbon dioxide and convert them into food; Heterotrophic beings do not have that capacity, so they must consume plants (in the case that they are herbivores) or animals that have already consumed those plants (that is, in the case that they are carnivorous). In other words, animals and humans always need to feed on other living beings, they could never do so only from inorganic elements such as water.
Electrons are a stable sub atomic particle that has a negative charge and is found in all atoms and is the main carrier of electricity through solids.
In a metal, some of the electrons can escape from the atoms and are free to move around inside the metal. These electrons are referred to as 'conduction electrons'.
<span>A current is a flow of charge. In metal a current is the flow of the conduction electrons through the metal. This can occur when connected to battery for example: The battery pumps the conduction electrons around the circuit. </span>
Answer:
C
Explanation:
If a pulley system has an efficiency of 74.2%, then only that fraction of the work performed will be useful. 74.2%=0.742. 0.742*200 is about 148J. Hope this helps!
Q = mcθ
Where m = mass of water in kg.
c = specific heat capacity in kJ/kg⁰C, c for water = 4200 kJ/kg⁰C
θ = temperature rise in ⁰C
Q = 100*4200* 20 Note here the temperature rise is 20 ⁰C
Q = 8 400 000 J
In calories, 4.2 J = 1 Calorie
= 8 400 000 / 4.2 = 200 000
Q = 200 000 Calories
Pressing two objects together with more force Increase friction