Hi there!
The answer would be B. the slope of the plane.
Changing the slope of the plane would show how fast the ball went when Galileo changed the steepness of the slope. If he didn’t change the slopes steepness he would have the same results each time.
Hope this helps !
Answer:
solution:
to find the speed of a jogger use the following relation:
V
=
d
x
/d
t
=
7.5
×m
i
/
h
r
...........................(
1
)
in Above equation in x and t. Separating the variables and integrating,
∫
d
x
/7.5
×=
∫
d
t
+
C
or
−
4.7619
=
t
+
C
Here C =constant of integration.
x
=
0 at t
=
0
, we get: C
=
−
4.7619
now we have the relation to find the position and time for the jogger as:
−
4.7619 =
t
−
4.7619
.
.
.
.
.
.
.
.
.
(
2
)
Here
x is measured in miles and t in hours.
(a) To find the distance the jogger has run in 1 hr, we set t=1 in equation (2),
to get:
= −
4.7619
=
1
−
4.7619
= −
3.7619
or x
=
7.15
m
i
l
e
s
(b) To find the jogger's acceleration in m
i
l
/
differentiate
equation (1) with respect to time.
we have to eliminate x from the equation (1) using equation (2).
Eliminating x we get:
v
=
7.5×
Now differentiating above equation w.r.t time we get:
a
=
d
v/
d
t
=
−
0.675
/
At
t
=
0
the joggers acceleration is :
a
=
−
0.675
m
i
l
/
=
−
4.34
×
f
t
/
(c) required time for the jogger to run 6 miles is obtained by setting
x
=
6 in equation (2). We get:
−
4.7619
(
1
−
(
0.04
×
6 )
)^
7
/
10=
t
−
4.7619
or
t
=
0.832
h
r
s
Line of code will call force with a value of 10 for mass and a value of 9.81 for acceleration is force(10, 9.81).
<h3 /><h3>Line of code for force and acceleration</h3>
- In mechanics, acceleration refers to the rate at which an object's velocity with respect to time varies.
- Acceleration is a vector quantity (in that they have magnitude and direction).
- The direction of an object's acceleration is determined by the direction of the net force acting on it.
- Newton's Second Law states that the combined effect of two factors determines how much an item accelerates.
- The size of the net balance of all external forces acting on the object is, in accordance with the materials used to create it.
- It inversely proportional to its mass, whereas the magnitude of the net resultant force is directly proportional to the net force.
def force(mass, acceleration):
force_val = mass*acceleration
return force_val
10 is assigned to mass and 9.81 is assigned to acceleration
def force(10, 9.81)
So, Line of code will call force with a value of 10 for mass and a value of 9.81 for acceleration is force(10, 9.81).
Learn more about acceleration here:
brainly.com/question/460763
#SPJ4