Answer:
A negative charge, if free to move in an electric field, will move from a low potential point to a high potential point. To move a positive charge against the electric field, work has to be done by you or a force external to the field.
Explanation:
Mark as Brainliest plz!!!
The formation of Earth is supported by the statements like, it is a terrestrial planet. it was formed from gas and dust. it was formed in a debris disk from colliding planetesimals.
The given problem is based on the correct statements entitling the description of Earth. Earth is amongst 8 planets in our solar system, that happen to orbit around the sun.
The statements given to describe the Earth are as follows:
- Earth is not an Outer planet. It is an inner planet that lies closest to the sun after Mercury and Venus.
- Earth is a terrestrial planet because it is having a compact and rocky surface. Also, it is known to be an as largest terrestrial planet in the solar system with extensive regions of liquids and water.
- The abundant rocky surfaces have evolved from the cloud of dust and gas, during the post-Big Bang Era. So, it is somewhere true to say that Earth is formed from gas and dust.
- The earlier atmosphere of Earth was known for having proportional layers of Hydrogen and Helium. Hence is quite true to say that the Earth is having an atmosphere of Hydrogen and helium gases, but it is not as thick as the like sun.
- Majority of terrestrial planets are formed from the collision of planetesimals in a debris disk. With Earth being one of them, it is quite correct to consider the given statement.
Thus, we can conclude that the formation of Earth is supported by the statements like: it is a terrestrial planet, it was formed from gas and dust and it was formed in a debris disk from colliding planetesimals.
Learn more about the planet Earth here:
brainly.com/question/24878669
Answer:
A. 16.9 m
Explanation:
I think this is the answer i am not sure
but hope it helps
Answer:
2.75 m/s^2
Explanation:
The airplane's acceleration on the runway was 2.75 m/s^2
We can find the acceleration by using the equation: a = (v-u)/t
where a is acceleration, v is final velocity, u is initial velocity, and t is time.
In this case, v is 71 m/s, u is 0 m/s, and t is 26.1 s Therefore: a = (71-0)/26.1
a = 2.75 m/s^2