After the collision the magnitude of the momentum of the system is Mv
Given:
mass of 1st object = M
speed of 1st object = v
mass of 2nd object = M
speed of 2nd object = 0
To Find:
magnitude of the momentum after collision
Solution: Product of the mass of a particle and its velocity. Momentum is a vector quantity; i.e., it has both magnitude and direction. Isaac Newton's second law of motion states that the time rate of change of momentum is equal to the force acting on the particle.
Applying conservation of linear momentum
Mv + M(0) = 2MV
Mv = 2MV
V = v/2
So, after collision momentum is
p = 2MV = 2xMxv/2 = Mv
So, after collision momentum is Mv
Learn more about Momentum here:
brainly.com/question/1042017
#SPJ4
Answer:a) 34.5 N; b) 24.5 N; c) 10 N; d) 1J
Explanation: In order to solve this problem we have to used the second Newton law given by:
∑F= m*a
F-f=m*a where f is the friction force (uk*Normal), from this we have
F= m*a+f=5 Kg*2 m/s^2+0.5*5Kg*9.8 m/s^2= 34.5 N
then f=uk*N=0.5*5Kg*9.8 m/s^2= 24.5N
the net Force = (34.5-24.5)N= 10 N
Finally the work done by the net force is equal to kinetic energy change so
W=∫Force net*dr= 10 N* 0.1 m= 1J
What’s the question or problem ?
Answer:
They are called beneficial mutations. They lead to new versions of proteins that help organisms adapt to changes in their environment. Beneficial mutations are essential for evolution to occur. They increase an organism's changes of surviving or reproducing, so they are likely to become more common over time.
Explanation:
Answer:
the weight of the object decreases when it is taken from the Earth to the Moon
Explanation:
The weight of an object is defined as the product of the mass of the object with the acceleration due to gravity of the Planet.

where,
W = weight of the object
m = mass of the object
g = acceleration due to gravity on the planet
The mass of an object remains constant everywhere in the universe. Therefore, the weight is directly proportional to the value of acceleration due to gravity.
The value of acceleration due to gravity on the Moon is lesser than its value on the Earth.
<u>Hence, the weight of the object decreases when it is taken from the Earth to the Moon </u>