1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mel-nik [20]
2 years ago
6

3) Explain how dc machines Can work as motor and generator​

Engineering
1 answer:
weeeeeb [17]2 years ago
5 0

The working principle of a DC machine is when electric current flows through a coil within a magnetic field, and then the magnetic force generates a torque that rotates the dc motor. The DC machines are classified into two types such as DC generator as well as DC motor.

You might be interested in
Air is pumped from a vacuum chamber until the pressure drops to 3 torr. If the air temperature at the end of the pumping process
malfutka [58]

Answer:

The final pressure is 3.16 torr

Solution:

As per the question:

The reduced pressure after drop in it, P' = 3 torr = 3\times 0.133\ kPa

At the end of pumping, temperature of air, T = 5^{\circ}C = 278 K

After the rise in the air temperature, T' = 20^{\circ}C = 293 K

Now, we know the ideal gas eqn:

PV = mRT

So

P = \frac{m}{V}RT

P = \rho_{a}RT          (1)

where

P = Pressure

V = Volume

\rho_{a} = air\ density

R = Rydberg's constant

T = Temperature

Using eqn (1):

P = \rho_{a}RT

\rho_{a} = \frac{P}{RT}

\rho_{a} = \frac{3 times 0.133\times 10^{3}}{0.287\times 278} = 0.005 kg/m^{3}

Now, at constant volume the final pressure, P' is given by:

\frac{P}{T} = \frac{P'}{T'}

P' = \frac{P}{T}\times T'

P' = \frac{3}{278}\times 293 = 3.16 torr

7 0
4 years ago
A tensile test was made on a tensile specimen, with a cylindrical gage section which had a diameter of 10 mm, and a length of 40
tamaranim1 [39]

Answer:

The answers are as follow:

a) 10 mm

b) 12.730 N/mm^{2}

c) 127.307 N/mm^{2}

d) 0.25

Explanation:

d1 = 10mm , L1 = 40 mm, L2 = 50 mm, reduction in area = 90% = 0.9

Force = F =1000 N

let us find initial area first, A1 = pi*r^{2} = 78.55 mm^{2}

using reduction in area formula : 0.9 = (A1 - A2 ) / A1

solving it will give,  A2 = 0.1 A1 = 7.855  mm^{2}

a) The specimen elongation is final length - initial length

50 - 40 = 10 mm

b) Engineering stress uses the original area for all stress calculations,

Engineering stress = force / original area  = F / A1 = 1000 / 78.55  

Engineering stress = 12.730 N / mm^{2}

c) True stress uses instantaneous area during stress calculations,

True fracture stress = force / final  area  = F / A2 = 1000 / 7.855

True Fracture stress = 127.30 N / mm^{2}

e) strain = change in length / original length

strain = 10 / 40  = 0.25

8 0
3 years ago
If gas costs $3.50 per gallon, how much would it cost to drive 500 miles in a city in a car that is 58.3 km/L
Akimi4 [234]
1 liter = .264 gallon
1 km = .621 mile

this means that 58.3km/L is equal to 137.13mpg

so

500/137.13 = 3.65 gallons of gas

3.65 x 3.5 = $12.78
5 0
3 years ago
Determine the carburizing time necessary to achieve a carbon concentration of 0.30 wt% at a position 4 mm into an iron–carbon al
Ahat [919]

Answer:

the carburizing time necessary to achieve a carbon concentration is 31.657 hours

Explanation:

Given the data in the question;

To determine the carburizing time necessary to achieve the given carbon concentration, we will be using the following equation:

(Cs - Cx) / (Cs - C0) = ERF( x / 2√Dt)

where Cs is Concentration of carbon at surface = 0.90

Cx is Concentration of carbon at distance x = 0.30 ; x in this case is 4 mm = ( 0.004 m )

C0 is Initial concentration of carbon = 0.10

ERF() = Error function at the given value

D = Diffusion of Carbon into steel

t = Time necessary to achieve given carbon concentration ,

so

(Cs - Cx) / (Cs - C0) = (0.9 - 0.3) / (0.9 - 0.1)

= 0.6 / 0.8

= 0.75

now, ERF(z) = 0.75; using ERF table, we can say;

Z ~ 0.81; which means ( x / 2√Dt) = 0.81

Now, Using the table of diffusion data

D = 5.35 × 10⁻¹¹ m²/sec at (1100°C) or 1373 K

now we calculate the carbonizing time by using the following equation;

z = (x/2√Dt)

t is carbonizing time

so we we substitute in our values

0.81 = ( 0.004 / 2 × √5.35 × 10⁻¹¹ × √t)

0.81 = 0.004 / 1.4628 × 10⁻⁵ × √t

0.81 × 1.4628 × 10⁻⁵ × √t = 0.004

1.184868 × 10⁻⁵ × √t = 0.004  

√t = 0.004 / 1.184868 × 10⁻⁵

√t = 337.5903

t = ( 337.5903)²  

t = 113967.21 seconds

we convert to hours

t = 113967.21 / 3600

t = 31.657 hours

Therefore, the carburizing time necessary to achieve a carbon concentration is 31.657 hours

7 0
3 years ago
How is air pressure affected by the shape of an aircraft wing
oksano4ka [1.4K]

Answer:

Airplanes' wings are curved on top and flatter on the bottom. That shape makes air flow over the top faster than under the bottom. As a result, less air pressure is on top of the wing. This lower pressure makes the wing, and the airplane it's attached to, move up.

Explanation:

3 0
3 years ago
Other questions:
  • A heated long cylindrical rod is placed in a cross flow of air at 20°C (1 atm) with velocity of 10 m/s. The rod has a diameter o
    5·1 answer
  • Motorcycles are extremely hard to see if they are _______. powered by quiet motors approaching from the side driving on the shou
    7·1 answer
  • Looking for new information is one reason you should do research for a speech.
    15·2 answers
  • What do you do when two parts of a transfer line move at different rates?
    5·1 answer
  • (a) calculate the moment at point "c", where point "c" is the square 3'' below the centroid
    13·1 answer
  • What is the definition of a struck by injury
    5·1 answer
  • A length of pipe will weigh the most when
    6·2 answers
  • What is
    5·2 answers
  • Liquid methanol is pumped from a large storage tank through a 1-in.ID pipe at a rate of 3.00gal/mm.
    5·1 answer
  • Calculate area moment of inertia for a circular cross section with 6 mm diameter
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!