Force = mass x acceleration
Mass is given to be 250kg
Acceleration is given to be 5m/s^2
Force = 250kg x 5m/s^2 = 1,250 kgm/s^2 = 1,250 Newtons
Explanation:
After some time t the current does not passing through the circuit
=>so the back emf is zero
=>here the inductor opposes decay of the circuit
- Ldi/dt = Ri
di/dt = - R/Li
di/i = - R/Ldt
now we applying the integration on both sides
log i=-R/Lt+C
here t=0=>i=io
Log io=C
=>Log i=-R/L*t + Log io
logi-Log io=-R/L*t
Log[i/io]=-R/L*t
i/io=e^-Rt/L
i=ioe^-Rt/L
the option D is correct
Explanation:
Acceleration is the rate of change of velocity with time. When acceleration increases a body moves a faster velocity.
- In the graph acceleration at time t= 100s is rapidly increasing.
- At t = 20s, the acceleration of the body is getting started up.
A vehicle at time 100s will have a faster velocity compared to one at t = 20s
Answer:
8F_i = 3F_f
Explanation:
When two identical spheres are touched to each other, they equally share the total charge. Therefore, When neutral C is first touch to A, they share the initial charge of A equally.
Let us denote that the initial charge of A and B are Q. Then after C is touched to A, their respective charges are Q/2.
Then, C is touched to B, and they share the total charge of Q + Q/2 = 3Q/2. Their respective charges afterwards is 3Q/4 each.
The electrostatic force, Fi, in the initial configuration can be calculated as follows.
![F_i = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{Q^2}{r^2}[/tex}The electrostatic force, Ff, in the final configuration is [tex]F_f = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{3Q^2/8}{r^2}[/tex}Therefore, the relation between Fi and Ff is as follows[tex]F_i = F_f\frac{3}{8}\\8F_i = 3F_f](https://tex.z-dn.net/?f=F_i%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7Bq_Aq_B%7D%7Br%5E2%7D%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7BQ%5E2%7D%7Br%5E2%7D%5B%2Ftex%7D%3C%2Fp%3E%3Cp%3EThe%20electrostatic%20force%2C%20Ff%2C%20in%20the%20final%20configuration%20is%20%3C%2Fp%3E%3Cp%3E%5Btex%5DF_f%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7Bq_Aq_B%7D%7Br%5E2%7D%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7B3Q%5E2%2F8%7D%7Br%5E2%7D%5B%2Ftex%7D%3C%2Fp%3E%3Cp%3ETherefore%2C%20the%20relation%20between%20Fi%20and%20Ff%20is%20as%20follows%3C%2Fp%3E%3Cp%3E%5Btex%5DF_i%20%3D%20F_f%5Cfrac%7B3%7D%7B8%7D%5C%5C8F_i%20%3D%203F_f)