Answer:

Explanation:
The mass of vented out in one day is:

Answer:

Explanation:
Lets take the numerator of the fraction to be = x
So the denominator of the fraction is 4 more than the numerator = x+4
The fraction is ;
Now add 4 to the numerator and add 7 to the denominator as;

This new fraction is equal to 1 half =1/2
write the equation as;

perform cross-product
2(x+4 )=1( x+11 )
2x+8 = x + 11
2x-x = 11-8
x=3
The original fraction is;

Answer:a
a) Vo/Vi = - 3.4
b) Vo/Vi = - 14.8
c) Vo/Vi = - 1000
Explanation:
a)
R1 = 17kΩ
for ideal op-amp
Va≈Vb=0 so Va=0
(Va - Vi)/5kΩ + (Va -Vo)/17kΩ = 0
sin we know Va≈Vb=0
so
-Vi/5kΩ + -Vo/17kΩ = 0
Vo/Vi = - 17k/5k
Vo/Vi = -3.4
║Vo/Vi ║ = 3.4 ( negative sign phase inversion)
b)
R2 = 74kΩ
for ideal op-amp
Va≈Vb=0 so Va=0
so
(Va-Vi)/5kΩ + (Va-Vo)74kΩ = 0
-Vi/5kΩ + -Vo/74kΩ = 0
Vo/Vi = - 74kΩ/5kΩ
Vo/Vi = - 14.8
║Vo/Vi ║ = 14.8 ( negative sign phase inversion)
c)
Also for ideal op-amp
Va≈Vb=0 so Va=0
Now for position 3 we apply nodal analysis we got at position 1
(Va - Vi)/5kΩ + (Va - Vo)/5000kΩ = 0 ( 5MΩ = 5000kΩ )
so
-Vi/5kΩ + -Vo/5000kΩ = 0
Vo/Vi = - 5000kΩ/5kΩ
Vo/Vi = - 1000
║Vo/Vi ║ = 1000 ( negative sign phase inversion)
Answer:
Explanation:
% Clears variables and screen
clear; clc
% Asks user for input
n = input('Total number of objects: ');
r = input('Size of subgroup: ');
% Computes and displays permutation according to basic formulas
p = 1;
for i = n - r + 1 : n
p = p*i;
end
str1 = [num2str(p) ' permutations'];
disp(str1)
% Computes and displays combinations according to basic formulas
str2 = [num2str(p/factorial(r)) ' combinations'];
disp(str2)
=================================================================================
Example: check
How many permutations and combinations can be made of the 15 alphabets, taking four at a time?
The answer is:
32760 permutations
1365 combinations
==================================================================================