1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tcecarenko [31]
3 years ago
9

Consider two different versions of algorithm for finding gcd of two numbers (as given below), Estimate how many times faster it

will be to find gcd (31415, 14142) by Euclid’s algorithm compared with the algorithm based on checking consecutive integers from min{m, n} down to gcd(m,n). Provide all the steps related to your solution.
Engineering
1 answer:
juin [17]3 years ago
5 0

Answer:

Explanation:

Step 1:

a) The formula for compute greatest advisor is

     gcd(m,n) = gcd (n,m mod n)

the gcd(31415,14142) by applying Euclid's algorithm is

    gcd(31,415,14,142) =gcd(14,142,3,131)

                                  =gcd=(3,131, 1,618)

                                   =gcd(1,618, 1,513)

                                   =gcd(1,513, 105)

                                   =gcd(105, 43)

                                    =gcd(43, 19)

                                     =gcd(19, 5)

                                      =gcd(5, 4)

                                      =gcd(4, 1)

                                      =gcd(1, 0)

                                      =1

STEP 2

b)  The number of comparison of given input with the algorithm based on  checking consecutive integers and Euclid's algorithm is

     The number of division using Euclid's algorithm =10 from part (a)

      The consecutive integer checking algorithm:

      The number of iterations =14,142 and 1 or 2 division of iteration.

        14,142 ∠= number of division∠ = 2*14,142

         Euclid's algorithm is faster by at least 14,142/10 =1400 times

          At most 2*14,142/10 =2800 times.

You might be interested in
What does this work for
Anastaziya [24]

Answer:

it allows your dash board to light up you MPH RPM and all the other numbers on the spadomter

Explanat

8 0
3 years ago
2.) A fluid moves in a steady manner between two sections in a flow
Talja [164]

Answer:

250\ \text{lbm/min}

625\ \text{ft/min}

Explanation:

A_1 = Area of section 1 = 10\ \text{ft}^2

V_1 = Velocity of water at section 1 = 100 ft/min

v_1 = Specific volume at section 1 = 4\ \text{ft}^3/\text{lbm}

\rho = Density of fluid = 0.2\ \text{lb/ft}^3

A_2 = Area of section 2 = 2\ \text{ft}^2

Mass flow rate is given by

m=\rho A_1V_1=\dfrac{A_1V_1}{v_1}\\\Rightarrow m=\dfrac{10\times 100}{4}\\\Rightarrow m=250\ \text{lbm/min}

The mass flow rate through the pipe is 250\ \text{lbm/min}

As the mass flowing through the pipe is conserved we know that the mass flow rate at section 2 will be the same as section 1

m=\rho A_2V_2\\\Rightarrow V_2=\dfrac{m}{\rho A_2}\\\Rightarrow V_2=\dfrac{250}{0.2\times 2}\\\Rightarrow V_2=625\ \text{ft/min}

The speed at section 2 is 625\ \text{ft/min}.

3 0
3 years ago
Which of the following are hazards associated with portable ladders?
PilotLPTM [1.2K]

Answer:

A,C, and D

Explanation:

Potible ladders have to configure with many designs in mind but the most evedent is that they are usally unstable

BRAINLIEST PLS

7 0
3 years ago
Read 2 more answers
Can you answer what is attached.
kirill [66]
29.4 bro I hope that helps
3 0
3 years ago
Methane gas is 304 C with 4.5 tons of mass flow per hour to an uninsulated horizontal pipe with a diameter of 25 cm. It enters a
Arada [10]

Answer:

a) h_c = 0.1599 W/m^2-K

b) H_{loss} = 5.02 W

c) T_s = 302 K

d) \dot{Q} = 25.125 W

Explanation:

Non horizontal pipe diameter, d = 25 cm = 0.25 m

Radius, r = 0.25/2 = 0.125 m

Entry temperature, T₁ = 304 + 273 = 577 K

Exit temperature, T₂ = 284 + 273 = 557 K

Ambient temperature, T_a = 25^0 C = 298 K

Pipe length, L = 10 m

Area, A = 2πrL

A = 2π * 0.125 * 10

A = 7.855 m²

Mass flow rate,

\dot{ m} = 4.5 tons/hr\\\dot{m} = \frac{4.5*1000}{3600}  = 1.25 kg/sec

Rate of heat transfer,

\dot{Q} = \dot{m} c_p ( T_1 - T_2)\\\dot{Q} = 1.25 * 1.005 * (577 - 557)\\\dot{Q} = 25.125 W

a) To calculate the convection coefficient relationship for heat transfer by convection:

\dot{Q} = h_c A (T_1 - T_2)\\25.125 = h_c * 7.855 * (577 - 557)\\h_c = 0.1599 W/m^2 - K

Note that we cannot calculate the heat loss by the pipe to the environment without first calculating the surface temperature of the pipe.

c) The surface temperature of the pipe:

Smear coefficient of the pipe, k_c = 0.8

\dot{Q} = k_c A (T_s - T_a)\\25.125 = 0.8 * 7.855 * (T_s - 298)\\T_s = 302 K

b) Heat loss from the pipe to the environment:

H_{loss} = h_c A(T_s - T_a)\\H_{loss} = 0.1599 * 7.855( 302 - 298)\\H_{loss} = 5.02 W

d) The required fan control power is 25.125 W as calculated earlier above

5 0
3 years ago
Other questions:
  • Pine Valley Furniture wants to use Internet systems to provide value to its customers and staff. There are many software technol
    5·1 answer
  • To prevent hydroplaning, _____. A. slow down B. speed up C. deflate your tires D. use cruise control
    15·1 answer
  • What are the desired characteristics or values for the following parameters of an ideal amplifier?o Phase change as a function o
    10·1 answer
  • Under EPA's regulations, which of the following methods can be used to pressurize an R11 or R123 system for the purpose of openi
    11·1 answer
  • Describe three parts of a fluid power system and the roles played by each to make the device work.
    8·1 answer
  • Determine the following parameters for the water having quality x=0.7 at 200 kPa:
    8·1 answer
  • Since no one is perfect is that a sentence fragment
    10·2 answers
  • Think about the KIA factory shown in the video, what are two things that managers could do to reduce waste or increase efficienc
    6·1 answer
  • Hi gospelgamer10 lol
    9·2 answers
  • 6.03 Discussion: Then & Now - Safety
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!