1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stiv31 [10]
3 years ago
9

Refrigerant 134a enters an air conditioner compressor at 4 bar, 208C, and is compressed at steady state to 12 bar, 808C. The vol

umetric flow rate of the refrigerant entering is 4 m3 / min. The work input to the compressor is 60 kJ per kg of refrigerant flowing. Neglecting kinetic and potential energy effects, determine the heat transfer rate, in kW
Engineering
1 answer:
SCORPION-xisa [38]3 years ago
6 0

Answer:

heat transfer rate is -15.71 kW

Explanation:

given data

Initial pressure  = 4 bar

Final pressure  = 12 bar

volumetric flow rate = 4 m³ / min

work input to the compressor = 60 kJ per kg

solution

we use here super hated table for 4 bar and 20 degree temperature and 12 bar and 80 degree is

h1 = 262.96 kJ/kg

v1 = 0.05397 m³/kg

h2 = 310.24 kJ/kg

and here mass balance equation will be

m1  = m2

and mass flow equation is express as

m1 = \frac{A1\times V1}{v1}       .......................1

m1 = \frac{4\times \frac{1}{60}}{0.05397}  

m1 = 1.2353 kg/s

and here energy balance equation is express as

0 = Qcv - Wcv + m × [ ( h1-h2) + \frac{v1^2-v2^2}{2} + g (z1-z2) ]      ....................2

so here Qcv will be

Qcv =  m × [  \frac{Wcv}{m} + (h2-h1)  ]    ......................3

put here value and we get

Qcv =  1.2353 × [ {-60}+ (310.24-262.96) ]

Qcv =  -15.7130 kW

so here heat transfer rate is -15.71 kW

You might be interested in
A cone penetration test was carried out in normally consolidated sand, for which the results are summarized below: Depth (m) Con
Cerrena [4.2K]

Answer:

hello your question is incomplete attached below is the missing equation related to the question  

answer : 40.389° , 38.987° , 38° , 39.869° , 40.265°

Explanation:

<u>Determine the friction angle at each depth</u>

attached below is the detailed solution

To calculate the vertical stress = depth * unit weight of sand

also inverse of Tan = Tan^-1

also qc is in Mpa while σ0 is in kPa

Friction angle at each depth

2 meters = 40.389°

3.5 meters  = 38.987°

5 meters = 38.022°

6.5 meters = 39.869°

8 meters = 40.265°

6 0
3 years ago
If you had a match and a lantern and a candle in the dark which one would you choose to light.
PSYCHO15rus [73]

Answer:

The match

Explanation:

You can light both the lantern and the candle if you light the match first.

I don't know of this is a homework question, but I answered it anyway :)

5 0
3 years ago
Read 2 more answers
ShoppingBay is an online auction service that requires several reports. Data for each auctioned item includes an ID number, item
daser333 [38]

Answer:

START

  READ ID_Number

  READ Item_description

  READ length_of_auction_Days

  READ minimum_required_bid  

  IF minimum_required_bid GREATER THAN 100

      THEN

          DISPLAY

              Item Details are

              Item Id : ID_Number

              Item Description: Item_description

              Length Action days: length_of_auction_Days

              Minimum Required Bid: minimum_required_bid

END

Explanation:

5 0
3 years ago
In Texas, failure to ______
malfutka [58]

Answer:

I'd say render ald at the scene of a collision

5 0
2 years ago
A flow field is characterized by the stream function ψ= 3x2y−y3. Demonstrate thatthe flow field represents a two-dimensional inc
boyakko [2]

Answer:

δu/δx+δu/δy = 6x-6x =0

9r^2

Explanation:

The flow is obviously two-dimensional, since the stream function depends only on the x and y coordinate. We can find the x and y velocity components by using the following relations:  

u =δψ/δy = 3x^2-3y^2

v =-δψ/δx = -6xy

Now, since:  

δu/δx+δu/δy = 6x-6x =0

we conclude that this flow satisfies the continuity equation for a 2D incompressible flow. Therefore, the flow is indeed a two-dimensional incompressible one.  

The magnitude of velocity is given by:  

|V| = u^2+v^2

    =(3x^2-3y^2)^2+(-6xy)^2

    =9x^4+18x^2y^2+9y^2

    =(3x^2+3y^2)^2

    =9r^2

where r is the distance from the origin of the coordinates, and we have used that r^2 = x^2 + y^2.  

The streamline ψ = 2 is given by the following equation:  

3x^2y — y^3 = 2,

which is most easily plotted by solving it for x:  

x =±√2-y^3/y

Plot of the streamline is given in the graph below.  

Explanation for the plot: the two x(y) functions (with minus and plus signs) given in the equation above were plotted as functions of y, after which the graph was rotated to obtain a standard coordinate diagram. The "+" and "-" parts are given in different colors, but keep in mind that these are actually "parts" of the same streamline.  

8 0
3 years ago
Other questions:
  • A fluid has a dynamic viscosity of 0.048 Pa.s and a specific gravity of 0.913. For the flow of such a fluid over a flat solid su
    10·1 answer
  • The underground storage of a gas station has leaked gasoline into the ground. Among the constituents of gasoline are benzene, wi
    12·2 answers
  • Here you go!!!!!!!!!!!!!!!!!1
    8·1 answer
  • A 150-lbm astronaut took his bathroom scale (aspring scale) and a beam scale (compares masses) to themoon where the local gravit
    9·1 answer
  • What are some quality assurance systems
    11·1 answer
  • Implement the following Matlab code:
    8·1 answer
  • Question
    8·1 answer
  • The aluminum rod (E1 = 68 GPa) is reinforced with the firmly bonded steel tube (E2 = 201 GPa). The diameter of the aluminum rod
    11·1 answer
  • OSHA requires safe work practices when working around brake shoes and clutches that contain asbestos.
    5·1 answer
  • What is resonance as in ultrasound waves formation using magnetostriction method​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!