1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pishuonlain [190]
3 years ago
14

How can I solve 23.5 million Nona meters to millimeters using no calculator because I have to show my work

Engineering
1 answer:
lozanna [386]3 years ago
6 0

Answer:

its so simple. u must mind some formulas.

Explanation:

mili->10^(-3)

micro->10^(-6)

nano->10^(-9)

so write the exact number and move "." to left or right depend question.

in this one:

23.5 is 23500000.0 nano with a default dot at the end

for turning to mili u must move the dot 6 steps to left so it will be: 23.5 milimeter.

You might be interested in
Does the Diesel engine have engine knock or detonation problem? Why?
Luda [366]

Explanation:

Yes Diesel engine have problem of knocking.

We know that knocking is phenomenon in which suddenly large amount of power generates this large amount of power will cause the failure of diesel engine.

Actually when one set of fuel inject inside the cylinder to burn with already compressed air (in general up to 10-15 bar) then this fuel does not burn complete and accumulate inside the cylinder.After that second set of fuel inject inside the cylinder then that one set of fuel burns with second set of fuel and produces large amount of sudden power for engine and causes the breaks in the crank or connecting rod of engine.it leads to damage the engine.

6 0
3 years ago
Sea B = 5.00 m a 60.0°. Sea C que tiene la misma magnitud que A y un ángulo de dirección mayor que el de A en 25.0°. Sea A ⦁ B =
uranmaximum [27]

Answer:

\| \vec A \| = 6.163\,m

Explanation:

Sean A, B y C vectores coplanares tal que:

\vec A = (\| \vec A \|\cdot \cos \theta_{A},\| \vec A \|\cdot \sin \theta_{A}), \vec B = (\| \vec B \|\cdot \cos \theta_{B},\| \vec B \|\cdot \sin \theta_{B}) y \vec C = (\| \vec C \|\cdot \cos \theta_{C},\| \vec C \|\cdot \sin \theta_{C})

Donde \| \vec A \|, \| \vec B \| y \| \vec C \| son las normas o magnitudes respectivas de los vectores A, B y C, mientras que \theta_{A}, \theta_{B} y \theta_{C} son las direcciones respectivas de aquellos vectores, medidas en grados sexagesimales.

Por definición de producto escalar, se encuentra que:

\vec A \,\bullet\, \vec B = \|\vec A \| \| \vec B \| \cos \theta_{B}\cdot \cos \theta_{A} + \|\vec A \| \| \vec B \| \sin \theta_{B}\cdot \sin \theta_{A}

\vec B \,\bullet\, \vec C = \|\vec B \| \| \vec C \| \cos \theta_{B}\cdot \cos \theta_{C} + \|\vec B \| \| \vec C \| \sin \theta_{B}\cdot \sin \theta_{C}

Asimismo, se sabe que \| \vec B \| = 5\,m, \theta_{B} = 60^{\circ}, \vec A \,\bullet \,\vec B = 30\,m^{2}, \vec B\, \bullet\, \vec C = 35\,m^{2}, \|\vec A \| = \| \vec C \| y \theta_{C} = \theta_{A} + 25^{\circ}. Entonces, las ecuaciones quedan simplificadas como siguen:

30\,m^{2} = 5\|\vec A \| \cdot (\cos 60^{\circ}\cdot \cos \theta_{A} + \sin 60^{\circ}\cdot \sin \theta_{A})

35\,m^{2} = 5\|\vec A \| \cdot [\cos 60^{\circ}\cdot \cos (\theta_{A}+25^{\circ}) + \sin 60^{\circ}\cdot \sin (\theta_{A}+25^{\circ})]

Es decir,

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot \cos (\theta_{A}+25^{\circ})+4.330\cdot \sin (\theta_{A}+25^{\circ}})]

Luego, se aplica las siguientes identidades trigonométricas para sumas de ángulos:

\cos (\theta_{A}+25^{\circ}) = \cos \theta_{A}\cdot \cos 25^{\circ} - \sin \theta_{A}\cdot \sin 25^{\circ}

\sin (\theta_{A}+25^{\circ}) = \sin \theta_{A}\cdot \cos 25^{\circ} + \cos \theta_{A} \cdot \sin 25^{\circ}

Es decir,

\cos (\theta_{A}+25^{\circ}) = 0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A}

\sin (\theta_{A}+25^{\circ}) = 0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A}

Las nuevas expresiones son las siguientes:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot (0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A})+4.330\cdot (0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A})]

Ahora se simplifican las expresiones, se elimina la norma de \vec A y se desarrolla y simplifica la ecuación resultante:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot (4.097\cdot \cos \theta_{A} +2.865\cdot \sin \theta_{A})

\frac{30\,m^{2}}{2.5\cdot \cos \theta_{A}+ 4.330\cdot \sin \theta_{A}} = \frac{35\,m^{2}}{4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}}

30\cdot (4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}) = 35\cdot (2.5\cdot \cos \theta_{A}+4.330\cdot \sin \theta_{A})

122.91\cdot \cos \theta_{A} + 85.95\cdot \sin \theta_{A} = 87.5\cdot \cos \theta_{A} + 151.55\cdot \sin \theta_{A}

35.41\cdot \cos \theta_{A} = 65.6\cdot \sin \theta_{A}

\tan \theta_{A} = \frac{35.41}{65.6}

\tan \theta_{A} = 0.540

Ahora se determina el ángulo de \vec A:

\theta_{A} = \tan^{-1} \left(0.540\right)

La función tangente es positiva en el primer y tercer cuadrantes y tiene un periodicidad de 180 grados, entonces existen al menos dos soluciones del ángulo citado:

\theta_{A, 1} \approx 28.369^{\circ} y \theta_{A, 2} \approx 208.369^{\circ}

Ahora, la magnitud de \vec A es:

\| \vec A \| = \frac{35\,m^{2}}{4.097\cdot \cos 28.369^{\circ} + 2.865\cdot \sin 28.369^{\circ}}

\| \vec A \| = 6.163\,m

8 0
3 years ago
The image to the right is an
Airida [17]
Imma take a guess and say it’s a project portfolio but I wouldn’t put that bc I don’t see an image
6 0
4 years ago
Two technicians are discussing hand tool use. Technician A says that a 6-point wrench is easier to use in tight places than a 12
Mila [183]

Answer:

<em>Technician B says that a ratchet is used to loosen fasteners that are very tight.</em>

Explanation:

A ratchet is a common wrench device with a fastener component. A ratchet wrench is an essential tool that is used to fasten or loosen nuts and bolts.

8 0
3 years ago
Read 2 more answers
Consider the products you use and the activities you perform on a daily basis. Describe three examples that use both SI units an
Gwar [14]

Answer: <u><em>Three examples of activities that I can perform on a daily basis that involves both metric units (SI units) and customary units include: measuring the length of a door using a tape measure, which includes both SI units and customary units (like feet, inches, and centimeters); baking a cake that requires one teaspoon (customary unit) of baking soda, which could also be converted into four grams (SI unit); weighing myself on a weighing scale, which can be measured by pounds (customary unit) or kilograms (metric unit).</em></u>

<u><em /></u>

Explanation: <u><em>I big brain</em></u><em> :) </em><u><em>(Not Really I Just Wanted To Help</em></u><em>) I hope this helped! ;)</em>

4 0
3 years ago
Other questions:
  • Air enters the compressor of a gas turbine at 100 kPa, 300 K. The air is compressed in two stages to 900 kPa, with intercooling
    10·1 answer
  • Difference between a pillar drill and radial arm pillar<br> drill<br>​
    7·1 answer
  • Refers to the capability to keep moving forward on a specified grade.
    5·1 answer
  • Hi, any kind of help on these questions will be appreciated.
    10·1 answer
  • The European Space Agency launched a probe called Rosetta in March 2004. In August​ 2014, Rosetta reached its​ destination: a co
    13·1 answer
  • A steady state filtration process is used to separate silicon dioxide (sand) from water. The stream to be treated has a flow rat
    5·1 answer
  • ¿Cómo se puede identificar los requerimientos de Posición y Orientación de los elementos de un sistema robótico?
    9·1 answer
  • Do you play escape from tarkov if so do you want to play it with me​
    13·1 answer
  • The design of a camshaft-drive system of a four-cylinder automobile engine is shown. As the engine is revved up, the belt speed
    8·1 answer
  • Which of the following is a true when describing an air ratchet?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!