Answer:
T/√8
Explanation:
From Kepler's law, T² ∝ R³ where T = period of planet and R = radius of planet.
For planet A, period = T and radius = 2R.
For planet B, period = T' and radius = R.
So, T²/R³ = k
So, T²/(2R)³ = T'²/R³
T'² = T²R³/(2R)³
T'² = T²/8
T' = T/√8
So, the number of hours it takes Planet B to complete one revolution around the star is T/√8
The answers are B, C, E and F.
Atoms from an element is mostly made of protons, neutrons, and electrons. Proton numbers are like a class number for each element. Each element has their own and they're all different. And the number of protons are equal to the number of electrons. Therefore, B is correct.
Isotopes. It's different atoms from a same element that has the same number of protons but different number of neutrons. For example in hydrogen, there's 3 Isotopes for hydrogen. Therefore, C is correct.
Again, proton for the same element is never changed, even if they're different Isotopes. So, E is correct.
Isotopes, again, different elements may have different Isotopes. Some has only 1, others may have a few or more. So, F is correct too.
Answer:
Solution A has a pH of 6 and solution B has a pH of 8. Which of the following is true regarding the concentration of hydrogen ions in each solution? A) A has 100 times greater H+ concentration than B. B) B has 100 times greater H+ concentration than A. C) A has 7/9 of the H+ concentration of B. D) A has 9/7 of the H+ concentration of B. E) none of these
Explanation:
Hey im super sorry if i get this wrong :)
Answer:8.75 s,
136.89 m
Explanation:
Given
Initial velocity
velocity after 5 s is 
Therefore acceleration during these 5 s


therefore time required to stop
v=u+at
here v=final velocity =0 m/s
initial velocity =31.29 m/s


(b)total distance traveled before stoppage


s=136.89 m