<span>362.51 Kelvin
ln (p1/p2) =( dH / R) (1/T2 - 1/T1)
ln (760 Torr /520Torr) =( 40,700 Joules / 8.314 J molâ’1K-1)(1/T2 - 1/373K)
ln (1.4615) =( 4895.35)(1/T2 - 0.002681)
0.37946 = 4895.35/T2 - (0.002681)(4895.35)
0.37946 = 4895.35/T2 - (13.124)
0.37946 + 13.124 = 4895.35/T2
13.5039 = 4895.35/T2
T2 = 4895.35 / 13.5039
T2 = 362.51
answer is 362.51 Kelvin
- 273
answer is also 89.5 Celsius</span>
Answer:
The stability of atoms depends on whether or not their outer-most shell is filled with electrons. If the outer shell is filled, the atom is stable. Atoms with unfilled outer shells are unstable, and will usually form chemical bonds with other atoms to achieve stability.
Explanation:
Voulme 1= 950 mL
Volume 2= ?
Temperature 1 = 25 C
Temperature 2 = 50 C
Convert your temperature to Kelvin
C+273=K
Temperature 1 = 25 C + 273 = 298 K
Temperature 2 = 50 C + 273 = 323 K
Plug in to the Formula
950 mL/298 K = ? / 323 K
Rearrange the formula to make one to solve for what is missing.
To get 323 K out of the denominator multiply by it.
Making it
950 mL x 323 K / 298 K = ?
Plug it in
950 mL x 323 K / 298 K = 1027.9 mL
The mass of 2.15 mol of hydrogen sulphide (H₂S) will be 73.272 gm and the mass of 3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) will be 1.82 gm
<h3>
What is Mole ?</h3>
A mole is a very important unit of measurement that chemists use.
A mole of something means you have 6.023 x 10 ²³ of that thing.
- For 2.15 mol of hydrogen sulphide (H₂S) :
1 mole hydrogen sulphide (H₂S) = 34.08088 grams
Therefore,
2.15 mol of hydrogen sulphide (H₂S) = 34.08088 grams x 2.15 mol
= 73.272 gm
- For 3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) ;
1 mol of lead(II) iodide, (PbI₂) = 461.00894 grams
Therefore,
3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) = 461.00894 grams x 3.95 × 10⁻³ mol
= 1.82 gm
Hence,The mass of 2.15 mol of hydrogen sulphide (H₂S) will be 73.272 gm and the mass of 3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) will be 1.82 gm
Learn more about mole here ;
brainly.com/question/21323029
#SPJ1
Answer: Because water has a high specific heat capacity due to the hydrogen bonding within the H₂O molecules ; so it takes a great deal of energy, or heat, to break these bonds— or to form them.
______________________________________________________