Answer:
Explained below
Explanation:
A) Newton's first law of motion states that an object will remain at rest or continue in its current state of motion except it is acted upon by another force.
Now using this law, when you jump off the ground, the earth will move a tiny bit and accelerate due to the force applied by the jumping.
B) Newton's 2nd law states that the acceleration of a system is directly proportional to the net external force acting on that system, is in the same direction with it and also inversely proportional to the mass.
In this case, when one jumps, an external force is exerted on the earth and we are told it is directly proportional to the acceleration of the system which in this case it's the earth, then it means that there is some motion by the earth even though you didn't see it move.
C) Newton's third law of motion states that to every action, there is an equal and opposite reaction.
In this case the motion of the jumper will lead to an equal and opposite reaction of the earth.
Answer:
and 20.86 seconds are the values of the rate constant and the half-life for this process respectively..
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
= let initial amount of the reactant
a = amount left after decay process
We have :


t = 95 s


Half life is given by for first order kinetics::


and 20.86 seconds are the values of the rate constant and the half-life for this process respectively..
<span>An ecosystem can only sustain so many organisms. That limit would be its carrying capacity. If the population goes above that number then other factors will cause the population to crash and then rebound to a constant level. </span>
The intensity of the light has no connection with the photoelectric effect.
That's what was so baffling about it before the particle nature of light
was suspected ... a match with a blue flame might stimulate the
photoelectric effect, but a high-power red searchlight couldn't do it.
Answer:
q = 0.036 C
Explanation:
Given that,
Current passes through a defibrillator, I = 18 A
Time, t = 2 ms
We need to find the charge moved during this time. We know that,
Electric current = charge/time

Put all the values,

So, 0.036 C of charge moves during this time.