Calcium has 2 valence electrons
Answer:
4.245s
Explanation:
Given that,
Hypothetical value of speed of light in a vacuum is 18 m/s
Speed of the car, 14 m/s
Time given is 6.76 s, and we're asked to find the observed time, T
The relationship between the two times can be given as
T = t / √[1 - (v²/c²)]
The missing variable were looking for is t, and we can find it if we rearrange the formula and make t the subject
t = T / √[1 - (v²/c²)]
And now, we substitute the values and insert into the equation
t = 6.76 * √[1 - (14²/18²)]
t = 6.76 * √[1 - (196/324)]
t = 6.76 * √(1 - 0.605)
t = 6.76 * √0.395
t = 6.76 * 0.628
t = 4.245 s
Therefore, the time the driver measures for the trip is 4.245s
The car’s velocity as a function of time is b + 2ct and the car’s average velocity during this interval is 0.9 m/s.
<h3>Average velocity of the car</h3>
The average velocity of the car is calculated as follows;
x(t) = a + bt + ct2
v = dx/dt
v(t) = b + 2ct
v(0) = -10.1 m/s + 2(1.1)(0) = -10.1 m/s
v(10) = -10.1 + 2(1.1)(10) = 11.9 m/s
<h3>Average velocity</h3>
V = ¹/₂[v(0) + v(10)]
V = ¹/₂ (-10.1 + 11.9 )
V = 0.9 m/s
Thus, the car’s velocity as a function of time is b + 2ct and the car’s average velocity during this interval is 0.9 m/s.
Learn more about velocity here: brainly.com/question/4931057
#SPJ1
An LED is useful because when a current passes through it, it gives out light.
Answer:
The photon has a wavelength of
Explanation:
The speed of a wave can be defined as:
(1)
Where v is the speed,
is the frequency and
is the wavelength.
Equation 1 can be expressed in the following way for the case of an electromagnetic wave:
(2)
Where c is the speed of light.
Therefore, 
can be isolated from equation 2 to get the wavelength of the photon.
(3)

Hence, the photon has a wavelength of
<em>Summary: </em>
Photons are the particles that constitutes light.