Answer:
omg i'm so sorry, i hope you get better <3!
Explanation:
To solve this problem we will use the related concepts in Newtonian laws that describe the force of gravitational attraction. We will use the given value and then we will obtain the proportion of the new force depending on the Radius. From there we will observe how much the force of attraction increases in the new distance.
Planet gravitational force



Distance between planet and star

Gravitational force is

Applying the new distance,


Replacing with the previous force,

Replacing our values


Therefore the magnitude of the force on the star due to the planet is 
The time taken for the tiny saliva to travel is 0.55 second.
The horizontal distance traveled at speed of 4 m/s is 2.2 m.
The horizontal distance traveled at speed of 20 m/s is 11 m.
<h3>
Time of motion of the tiny saliva</h3>
The time taken for the tiny saliva to travel is calculated as follows;
h = vt + ¹/₂gt²
where;
- v is initial vertical velocity = 0
- g is the acceleration due to gravity
h = 0 + ¹/₂gt²
h = ¹/₂gt²
2h = gt²
t² = 2h/g
t = √(2h/g)
Substitute the given parameters and solve for time of motion;
t = √(2 x 1.5 / 10)
t = 0.55 second
<h3>Horizontal distance traveled at speed of 4 m/s</h3>
X = Vx(t)
X = (4 m/s)(0.55)
X = 2.2 m
<h3>Horizontal distance traveled at speed of 20 m/s</h3>
X = (20)(0.55)
X = 11 m
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1
Answer:
Explanation:
If you drop a ball from
the top of a building it
gains speed as it falls.
• Every second, its
speed increases by
10 m/s.
• Also it does not fall
equal distances in
equal time intervals
• If the acceleration = 0 then the velocity is
constant. [remember that acceleration is
the rate of change of velocity]
• In this case the distance an object will
travel in a certain amount of time is given
by distance = velocity x time
• For example, if you drive at 60 mph for
one hour you go 60 mph x 1 hr = 60 mi.