It is orbiting the object.
In a direct current (DC) electrical circuit, the voltage (V in volts) is an expression of the available energy per unit charge which drives the electric current (I in amperes) around a closed circuit. Increasing the resistance (R in ohms) will proportionately decrease the current which may be driven through the circuit by the voltage.
Each quantity and each operational relationship in a battery-operated DC circuit has a direct analog in the water circuit. The nature of the analogies can help develop an understanding of the quantities in basic electric ciruits. In the water circuit, the pressure P drives the water around the closed loop of pipe at a certain volume flow rate F. If the resistance to flow R is increased, then the volume flow rate decreases proportionately. You may click any component or any relationship to explore the the details of the analogy with a DC electric circuit.
The total momentum of the system is equal to 50 Kgm/s.
<u>Given the following data:</u>
To determine the total momentum of the system:
Mathematically, momentum is given by the formula;

<u>For Football player 1:</u>

Momentum 1 = 160 Kgm/s.
<u>For Football player 2:</u>

Momentum 1 = 210 Kgm/s.
Now, we can calculate the total momentum of the system:

Total momentum = 50 Kgm/s.
<u>Note:</u> We subtracted because the football players were moving in opposite directions.
Read more: brainly.com/question/15517471
Wavelength= velocity/frequency
5/2.5=2
Answer:
C. An external downward field is created or an external downward field is removed
Explanation:
As we can see that from the attached figure that the induced current would be counter clockwise. So the field occur because of induced current i.e. out of page. This represent that the current is induced in order to rise the flux out of the direction of the page
Therefore because of the external field, the field out of page & flux would be reducing or the external upward field is eliminated
So option C is correct