1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maksim231197 [3]
3 years ago
9

1)After catching the ball, Sarah throws it back to Julie. However, Sarah throws it too hard so it is over Julie's head when it r

eaches Julie's horizontal position. Assume the ball leaves Sarah's hand a distance 1.5 meters above the ground, reaches a maximum height of 8 m above the ground, and takes 1.505 s to get directly over Julie's head.
What is the speed of the ball when it leaves Sarah's hand? (the answers is not 16.67m/s)

2)How high above the ground will the ball be when it gets to Julie?(the answers is not 7.744)
Physics
1 answer:
DENIUS [597]3 years ago
5 0

Answer:

1)

v_{oy}=11.29\ m/s

2)

y=7.39\ m

Explanation:

<u>Projectile Motion</u>

When an object is launched near the Earth's surface forming an angle \theta with the horizontal plane, it describes a well-known path called a parabola. The only force acting (neglecting the effects of the wind) is the gravity, which acts on the vertical axis.

The heigh of an object can be computed as

\displaystyle y=y_o+V_{oy}t-\frac{gt^2}{2}

Where y_o is the initial height above the ground level, v_{oy} is the vertical component of the initial velocity and t is the time

The y-component of the speed is

v_y=v_{oy}-gt

1) We'll find the vertical component of the initial speed since we have not enough data to compute the magnitude of v_o

The object will reach the maximum height when v_y=0. It allows us to compute the time to reach that point

v_{oy}-gt_m=0

Solving for t_m

\displaystyle t_m=\frac{v_{oy}}{g}

Thus, the maximum heigh is

\displaystyle y_m=y_o+\frac{v_{oy}^2}{2g}

We know this value is 8 meters

\displaystyle y_o+\frac{v_{oy}^2}{2g}=8

Solving for v_{oy}

\displaystyle v_{oy}=\sqrt{2g(8-y_o)}

Replacing the known values

\displaystyle v_{oy}=\sqrt{2(9.8)(8-1.5)}

\displaystyle v_{oy}=11.29\ m/s

2) We know at t=1.505 sec the ball is above Julie's head, we can compute

\displaystyle y=y_o+V_{oy}t-\frac{gt^2}{2}

\displaystyle y=1.5+(11.29)(1.505)-\frac{9.8(1.505)^2}{2}

\displaystyle y=1.5\ m+16,991\ m-11.098\ m

y=7.39\ m

You might be interested in
The smallest unit of an element that has all of the properties of the element is a/an
AysviL [449]

Answer:B

Explanation: an atom is the smallest particle of an element that can take part in a chemical reaction.

7 0
3 years ago
The period of a simple pendulum is 3.5 s. The length of the pendulum is doubled. What is the period T of the longer pendulum?
Rudik [331]

Answer:

Explanation:

T = 2π√(L/g)

If you increase L to 2L, the period is increased by a factor of √2

T = 3.5√2 ≈ 4.9 s

6 0
3 years ago
Calculate the current flowing if a charge of 36 kilocoulombs flows in 1 hour.
kupik [55]

Answer:

2hrs and some mins

Explanation:

bc 2×36= 17 =)

3 0
3 years ago
The moment of inertia of a thin uniform rod of mass M and length L about an Axis perpendicular to the rod through its Centre is
sleet_krkn [62]

Answer:

I = I₀ + M(L/2)²

Explanation:

Given that the moment of inertia of a thin uniform rod of mass M and length L about an Axis perpendicular to the rod through its Centre is I₀.

The parallel axis theorem for moment of inertia states that the moment of inertia of a body about an axis passing through the centre of mass is equal to the sum of the moment of inertia of the body about an axis passing through the centre of mass and the product of mass and the square of the distance between the two axes.

The moment of inertia of the body about an axis passing through the centre of mass is given to be I₀

The distance between the two axes is L/2 (total length of the rod divided by 2

From the parallel axis theorem we have

I = I₀ + M(L/2)²

5 0
3 years ago
The law of reflection says that the angle of incidence is
nekit [7.7K]
The law of reflection states that the angle of incidence is equal to the angle of reflection. Furthermore, the law of reflection states that the incident ray, the reflected ray and the normal all lie in the same plane.

hope this helps :)

4 0
3 years ago
Other questions:
  • Which characteristic accounts for the fact that red lights are used in dark rooms and DO NOT expose negatives during developing?
    9·2 answers
  • A very small tilt in Earth’s axis would likely cause ____.
    5·2 answers
  • The most serious effect of radiation on humans is
    15·1 answer
  • Why is the sky blue? The earth is surrounded by an atmosphere.
    12·1 answer
  • Democritus discovery
    13·1 answer
  • The break light on a car is connected to a 12V battery. If the resulting current is 0.4A what is the resistance of the brake lig
    14·1 answer
  • Deonte’s family sees a solar panel display and considers using solar power for their home. Deonte knows that solar energy is a n
    5·1 answer
  • PLZZZZZZ HELP 50 POINTS Directions
    6·1 answer
  • Which of the following is the main difference between speed and velosity? A) speed is measured over time B) velocity has both sp
    10·1 answer
  • Mental health can be improved by (5 points)
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!