Answer
given,
y(x,t)= 2.20 mm cos[( 7.02 rad/m )x+( 743 rad/s )t]
length of the rope = 1.33 m
mass of the rope = 3.31 g
comparing the given equation from the general wave equation
y(x,t)= A cos[k x+ω t]
A is amplitude
now on comparing
a) Amplitude = 2.20 mm
b) frequency =


f = 118.25 Hz
c) wavelength




d) speed


v = 105.84 m/s
e) direction of the motion will be in negative x-direction
f) tension


T = 27.87 N
g) Power transmitted by the wave


P = 0.438 W
Plugging in for the Earth's mass and for G, we have 11.2 km/s for the escape velocity for an object launched from the Earth's surface. This is about 25,000 miles per hour
Answer:
i think it would be which angle converts the most potential energy to into kinetic energy of the turbine
Explanation: because the windmill makes kinetic energy and converts it into mechanical power. then a generator takes the mechanical power and makes it into electricity
Drag from her armas would slow her down if she was spinning at a fast speed
Answer: He would reach 7m/s at the distance of 17,5m.
Explanation: In order for us to know how long it takes for the speed to be reached, we use the equation V= Vo + at, with V=7m/s, Vo= 0m/s since you start from rest and a=1.4m/s². T is the time in seconds that we want to find out.
7 = 0 + 1.4t
7 = 1.4t
t= 5s
Now, we want to know the distance this boy reaches in 5 seconds, in a 7m/s speed and accelarating in 1.4m/s². For finding this out, we use another equation, S = So + Vot + (at²)/2, S being the final distance, So = 0m because he started from rest, and the other variables used before.
S = 0 + 0*5 + [1.4*(5²)]/2
S = 0 + 0 + (1.4*25)/2
S = 35/2
S = 17,5m