Answer:
The focal length of the appropriate corrective lens is 35.71 cm.
The power of the appropriate corrective lens is 0.028 D.
Explanation:
The expression for the lens formula is as follows;

Here, f is the focal length, u is the object distance and v is the image distance.
It is given in the problem that the given lens is corrective lens. Then, it will form an upright and virtual image at the near point of person's eye. The near point of a person's eye is 71.4 cm. To see objects clearly at a distance of 24.0 cm, the corrective lens is used.
Put v= -71.4 cm and u= 24.0 cm in the above expression.


f= 35.71 cm
Therefore, the focal length of the corrective lens is 35.71 cm.
The expression for the power of the lens is as follows;

Here, p is the power of the lens.
Put f= 35.71 cm.

p=0.028 D
Therefore, the power of the corrective lens is 0.028 D.
Answer:
a) 3.9 x 10⁻⁵ kg
Explanation:
The amount of mass required to produce the energy can be given by Einstein's formula:

where,
m = mass required = ?
E = Energy produced = 3.5 x 10¹² J
c = speed of light = 3 x 10⁸ m/s
Therefore,

Hence, the correct option is:
<u>a) 3.9 x 10⁻⁵ kg</u>
Answer:

Explanation:
Power is related to energy by the following relationship:

where
P is the power used
E is the energy used
t is the time elapsed
In this problem, we know that
- the power of the fan is P = 120 W
- the fan has been running for one hour, which corresponds to a time of

So we can re-arrange the previous equation to find E, the energy (in the form of thermal energy) released by the fan:

Answer:
a)
b)
c) 0 J/K
d)S= 61.53 J/K
Explanation:
Given that
T₁ = 745 K
T₂ = 101 K
Q= 7190 J
a)
The entropy change of reservoir 745 K

Negative sign because heat is leaving.

b)
The entropy change of reservoir 101 K


c)
The entropy change of the rod will be zero.
d)
The entropy change of the system
S= S₁ + S₂
S = 71.18 - 9.65 J/K
S= 61.53 J/K