Phenyl oxalate ester is responsible for the luminescence in aglow stick<span>. The reaction with hydrogen peroxide </span>causes<span> the liquid inside a </span><span>glow stick to glow</span>
Answer:
Work done = 4584.9 J
Explanation:
given: q1=3.0 mC = 3.0 × 10⁻³ C, r = 20 cm = 0.20 m, q1 = 34μC = 34 × 10⁻⁶ C
Solution:
Formula for the potential difference at the center of the circle
P.E = K × q1 q2 /r (Coulomb's constant k= 8.99 × 10⁹ N·m² / C²)
P.E = 8.99 × 10⁹ N·m² / C² × 3.0 × 10⁻³ C × 34 × 10⁻⁶ C / 0.20 m
P.E = 4584.9 J = Work done
<span>In order for
an object to accelerate, a <u>force</u> must be applied. It follows Newton’s second
law of motion where it states that a body at rest remains at rest unless a
force is acted upon it. When you move an object, you are exerting a force onto
it. By exerting a force on the object, you are actually displacing it from its
initial position. You cannot apply force to the object without altering its
position. Keep in mind that when you exert work, you are exerting energy too. </span>
If you are talking about volume, then an easy way to measured the volume of a liquid would be with a graduated cylinder. A graduated cylinder is marked with volume units such as milliliter (mL) or the liter (L). One liter equals 1 thousand milliliters.
To measure the volume of a solid you use the formula V = (Length)(Width)(Height)
To measure the volume of a gas you use a graduated cylinder held upside down. At first the cylinder is filled with water. When air is blown into the cylinder, bubbles rise and push some water down. The volume of the water pushed down is equal to the volume of the gas that was blown in.