The value of equilibrium constant is equal to the quotient of the products raised to its stoichiometric coefficient over the reaction's reactants raised to its respective stoichiometric coeff. The equation is Kc=[SO2][Cl2]/[SO2Cl2]= [1.3*10^-2][1.3*10^-2]/[2.2*10^-2-<span>1.3*10^-2]=0.0188. The final answer is Kc=0.0188.</span>
Answer:
n Al= 10/27( mol)- >n Al2O 3 =5/27(mol)
Explanation:
Answer:
A) The law of conservation of energy states that energy can neither be created nor destroyed.
and
B) Energy can be transferred from one object to another, and it can assume different forms.
Propanol molecular formula is C₃H₇OH
the balanced reaction for combustion of propanol is as follows;
2C₃H₇OH + 9O₂ --> 6CO₂ + 8H₂O
Molar ratio of reactants to products can be found out by the stoichiometry.
By looking at the coefficients of reactants and products in the balanced reaction equation, molar ratio can determined.
Therefore the molar ratio of propanol to CO₂ is 2:6, simplified --> 1:3
Answer : The concentration of HI (g) at equilibrium is, 0.643 M
Explanation :
The given chemical reaction is:

Initial conc. 0.10 0.10 0.50
At eqm. (0.10-x) (0.10-x) (0.50+2x)
As we are given:

The expression for equilibrium constant is:
![K_c=\frac{[HI]^2}{[H_2][I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5BI_2%5D%7D)
Now put all the given values in this expression, we get:

x = 0.0713 and x = 0.134
We are neglecting value of x = 0.134 because the equilibrium concentration can not be more than initial concentration.
Thus, we are taking value of x = 0.0713
The concentration of HI (g) at equilibrium = (0.50+2x) = [0.50+2(0.0713)] = 0.643 M
Thus, the concentration of HI (g) at equilibrium is, 0.643 M