Lithium Arsenate - Li3AsO4 (160g/mol). So, it’s 2,13 mol * 160 g/mol = 340,8 g.
Answer:
There are no unpaired electrons.
Explanation:
There are no unpaired electrons in the Lewis symbol for a nitride ion(
).The nitride ion has a charge of -3. The negative charge on the Nitride ion indicates a gain in electrons . Nitrogen has 5 valence electrons that is the number of electrons that are in its outer shell .The total number of electrons that the nitride ion has is equal to 5+3 = 8 electrons . Electrons usually appear in pairs and obey the octet rule therefore the nitride ion has four electron pairs no unpaired electrons.
The sun gives off light energy to help plants photosynthesize and make food
The correct answer is approximately 11.73 grams of sulfuric acid.
The theoretical yield of water from Al(OH)3 is lower than that of H₂SO₄. As a consequence, Al(OH)3 is the limiting reactant, H₂SO₄ is in excess.
The balanced equation is:
2Al(OH)₃ + 3H₂SO₄ ⇒ Al₂(SO₄)₃ + 6H₂O
Each mole of Al(OH)3 corresponds to 3/2 moles of H₂SO₄. The molecular mass of Al(OH)3 is 78.003 g/mol. There are 15/78.003 = 0.19230 moles of Al(OH)3 in the five grams of Al(OH)3 available. Al(OH)3 is in limiting, which means that all 0.19230 moles will be consumed. Accordingly, 0.19230 × 3/2 = 0.28845 moles of H₂SO₄ will be consumed.
The molar mass of H₂SO₄ is 98.706 g/mol. The mass of 0.28845 moles of H₂SO₄ is 0.28845 × 98.706 = 28.289 g
40 grams of sulfuric acid is available, out of which 28.289 grams is consumed. The remaining 40-28.289 = 11.711 g is in excess, which is closest to the first option, that is, 11.73 grams of H₂SO₄.
Answer: After 4710 seconds, 1/8 of the compound will be left
Explanation:
Using the formulae
Nt/No = (1/2)^t/t1/2
Where
N= amount of the compound present at time t
No= amount of compound present at time t=0
t= time taken for N molecules of the compound to remain = 4710 seconds
t1/2 = half-life of compound = 1570 seconds
Plugging in the values, we have
Nt/No = (1/2)^(4710s/1570s)
Nt/No = (1/2)^3
Nt/No= 1/8
Therefore after 4710 seconds, 1/8 molecules of the compound will be left