Answer:
physical change because even though gas formation was observed the water was undergoing a state change which means that it's original properties are preserved
Molecular Motion<span> is the speed at which molecules or atoms move dependent on temperature and state of matter.
Explanation:
</span>All molecules are<span> in constant motion. Molecules of a liquid have </span>a lot of<span> freedom of movement than those </span>in an exceedingly<span> solid. Molecules </span>in an exceedingly<span> gas have </span>the best<span> degree of motion.</span>
<span>
Heat, temperature </span>and also the<span> motion of molecules </span>area unit<span> all </span>connected<span>. Temperature </span>could be a life<span> of </span>the common K.E.<span> of the molecules </span>in an exceedingly<span> material. Heat </span>is that the<span> energy transferred between materials that have </span>completely different temperatures<span>. Increasing the temperature </span>will increase<span> the </span>travel<span> motion of molecules Energy </span>is expounded<span> to temperature by the relationship.</span>
3.01 Ă— 10^24 Ă— (12/5) hydrogen atoms
Looking at the formula for the molecule, the ratio of carbon to hydrogen atoms is 5:12, so if we divide the number of carbon atoms by 5 and then multiply by 12, we can find the number of hydrogen atoms. Let's look at the available options and see what makes sense.
3.01 Ă— 10^24 Ă— (12/5) hydrogen atoms
* This is exactly correct.
(3.01 Ă— 10^24 / 5) hydrogen atoms
* Nope. This will tell you how many pentane MOLECULES you have, but not the number of hydrogen atoms.
3.01 Ă— 10^24 Ă— (5/12) hydrogen atoms
* Close, but the ratio (5/12) will tell you the number of carbon atoms you have if you give it the number of hydrogen atoms. So this choice is wrong.
3.01 Ă— 10^24 Ă— 12 hydrogen atoms description
* This would tell you the number of hydrogen atoms you have if you know the number of pentane molecules you have. So this choice is also wrong.
The number of C2H5OH in a 3 m solution that contain 4.00kg H2O is calculate as below
M = moles of the solute/Kg of water
that is 3M = moles of solute/ 4 Kg
multiply both side by 4
moles of the solute is therefore = 12 moles
by use of Avogadro law constant
1 mole =6.02 x10^23 molecules
what about 12 moles
=12 moles/1 moles x 6.02 x10^23 = 7.224 x10^24 molecules