Answer:
The new concentration is 0.125 M.
Explanation:
Given data:
Initial volume V₁ = 125.0 mL
Initial molarity M₁ = 0.150 M
New volume V₂ = 25 mL +125 mL = 150 mL
New concentration M₂ = ?
Solution:
M₁V₁ = M₂V₂
0.150 M × 125 mL = M₂ × 150 mL
M₂ = 0.150 M × 125 mL / 150mL
M₂ = 18.75 M.mL/150 mL
M₂ = 0.125 M
The new concentration is 0.125 M.
Answer:
The O is being oxidized, but at the same time, is being reducted.
Explanation:
H₂O₂(l) + ClO₂(aq) → ClO₂(aq) + O₂(g)
In this reaction, we have 4 compounds:
Hydrogen peroxide
Chlorine dioxide (twice)
Oxygen
In both dioxide, the Cl acts with +4 in oxidation state; the oxygen acts with -2.
Oxgen in ground state has 0, as oxidation number.
In peroxide, the H acts with +1 but the oxygen acts with -1.
Peroxide is making the oxidation number from the O in the ClO₂, to decrease (reduction) and to increase in the O, at the ground state.
Hydrogen peroxide is a good reducing and oxidizing agent at the same time.
Answer:
Chemical formula of the precipitate is Fe(OH)₃
Explanation:
Fe(NO₃)₃ and K₂CO₃ are strong electrolytes and completely dissociates in water. Carbonate ions is a weak base and combines with water to form hydroxide ions (OH⁻), as follows
CO₃²⁻ + H₂O <----------------> HCO₃⁻ + OH⁻
Ferric, Fe (III), combines with these hydroxide ions to form insoluble precipitates. Fe(OH)₃ is only partially soluble i.e., it does not completely dissociate in water. When the solutions of Fe(NO₃)₃ and K₂CO₃ are mixed together, Fe(OH)₃ precipitates out due to the strong electrostatic attraction between Fe (III) and hydroxide ions.
The pressure of the oxygen gas collected : 718 mmHg
<h3>Further explanation</h3>
Given
P tot = 748 mmHg
P water vapour = 30 mmHg
Required
P Oxygen
Solution
Dalton's law of partial pressures states that the total pressure of a mixture of gases is equal to the sum of the partial pressures of the component gases
Can be formulated:
P tot = P1 + P2 + P3 ....
The partial pressure is the pressure of each gas in a mixture
P tot = P H₂O + P Oxygen
P Oxygen = 748 mmHg - 30 mmHg
P Oxygen = 718 mmHg
No. of atoms=mols*avagadros no.
N=n*No
N=17 * 6.022 *10^23
No. Of atoms=(17) (6.022*10^23)