Answer:
460 g
Explanation:
Heat lost by the warm water = heat gained by the cold water
-mCΔT = mCΔT
-m (4.184 J/g/K) (37°C − 85°C) = (1000 g) (4.184 J/g/K) (37°C − 15°C)
-m (37°C − 85°C) = (1000 g) (37°C − 15°C)
-m (-48°C) = (1000 g) (22°C)
m = 458 g
Rounded to two significant figures, you need a mass of 460 g of water.
Answer:
20 N/m
Explanation:
From the question,
The ball-point pen obays hook's law.
From hook's law,
F = ke............................ Equation 1
Where F = Force, k = spring constant, e = compression.
Make k the subject of the equation
k = F/e........................ Equation 2
Given: F = 0.1 N, e = 0.005 m.
Substitute these values into equation 2
k = 0.1/0.005
k = 20 N/m.
Hence the spring constant of the tiny spring is 20 N/m
It is D,Copernicus.when he first proposed the idea everyone thought he was nuts and that it was not plausible.even though his theory wasn't so accurate it still helped further scientific research.HE was born February 19,1473 and he published a book about his theory.
Answer:
Fundamental frequency in the string will be 25 Hz
Explanation:
We have given length of the string L = 1.2 m
Speed of the wave on the string v = 60 m/sec
We have to find the fundamental frequency
Fundamental frequency in the string is equal to
, here v is velocity on the string and L is the length of the string
So frequency will be equal to 
So fundamental frequency will be 25 Hz
Answer:
60 km
Explanation:
For an object (or a person, such as in this case) moving at constant speed, the speed is equal to the ratio between the distance travelled and the time taken:
where
v is the speed
d is the distance
t is the time taken
In this case, we have:
v = 120 km/h is the speed
t = 30 min = 0.5 h is the time taken
Therefore, we can rearrange the equation to find the total distance travelled: