First, when the student added the layers of wax over each other, this became a representation of sedimentary rocks.
Then the student folded his/her palm and squeezed the layers of wax. This means that the student applied heat and pressure on the wax (sedimentary rocks)
Referring to the diagram below which represents the rock cycle, we will find that applying heat and pressure on sedimentary rocks would convert these rocks into metamorphic rocks.
Based on the above, the best choice would be:<span>d. Heat and pressure can change sedimentary rocks into metamorphic rocks.</span>
Answer:
8.8 m and 52.5 m
Explanation:
The vertical component and horizontal component of water velocity leaving the hose are


Neglect air resistance, vertically speaking, gravitational acceleration g = -9.8m/s2 is the only thing that affects water motion. We can find the time t that it takes to reach the blaze 10m above ground level



t = 3.49 or t = 0.58
We have 2 solutions for t, one is 0.58 when it first reach the blaze during the 1st shoot up, the other is 3.49s when it falls down
t is also the times it takes to travel across horizontally. We can use this to compute the horizontal distance between the fire-fighters and the building


About 10% to 15% of system charge
Answer:
Explanation:
Given that, the pilot can withstand 9g acceleration which is approximately 88m/s².
Now, the pilot is traveling in a circle of radius
r = 3340 m
And the speed is
v = 495 m/s
Then, acceleration?
The acceleration of a circular motion can be determine using centripetal acceleration
a = v² / r
a = 495² / 3340
a = 73.36 m/s².
Since the acceleration is less that the acceleration the pilot can withstand, then, I think the pilot makes the turn without blacking out and successfully
Answer:
D. "The net force is zero, so the acceleration is zero"
Explanation:
edge 2020